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Abstract. Smart structures are usually designed with a stimulus-
response mechanism to mimic the autoregulatory process of living
systems. In this work, in order to simulate this natural and self-
adjustable behavior, an adaptive fuzzy sliding mode controller is
applied to a shape memory two-bar truss. This structural system
exhibits both constitutive and geometrical nonlinearities presenting the
snap-through behavior and chaotic dynamics. On this basis, a variable
structure controller is employed for vibration suppression in the chaotic
smart truss. The control scheme is primarily based on sliding mode
methodology and enhanced by an adaptive fuzzy inference system
to cope with modeling inaccuracies and external disturbances. The
robustness of this approach against both structured and unstructured
uncertainties enables the adoption of simple constitutive models for
control purposes. The overall control system performance is evaluated
by means of numerical simulations, promoting vibration reduction and
avoiding snap-through behavior.

1 Introduction

The term smart structures and systems has been used to identify mechanical systems
that are capable of changing their geometry or physical properties with the purpose
of performing a specific task. They must be equipped with sensors and actuators that
induce such controlled alterations. Several applications in different fields of sciences
and engineering have been developed with this innovative idea, employing some of
the so-called smart materials. Shape memory alloys (SMAs), piezoelectric materials
and magneto-rheological fluids are some of the smart materials largely employed in
structural systems.
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Specifically, shape memory alloys are being used in situations where high force,
large strain, and low frequency structural control are needed. SMA actuators are
easy to manufacture, relatively lightweight, and able of producing high forces or
displacements. Self-actuating fasteners, thermally actuator switches and several
bioengineering devices are some examples of these SMA applications. Aerospace
technology are also using SMAs for distinct purposes as space savings achieved
by self-erectable structures, stabilizing mechanisms, non-explosive release devices,
among others. Micromanipulators and robotics actuators have been built employing
SMAs properties to mimic the smooth motions of human muscles. Moreover, SMAs
are being used as actuators for vibration and buckling control of flexible structures.
SMA thermomechanical behavior is related to thermoelastic martensitic trans-

formations. The shape memory effect is a phenomenon where apparent plastically
deformed objects may recover their original form after going through a proper
heat treatment. The pseudoelastic behavior is characterized by complete strain
recovery accompanied by large hysteresis in a loading-unloading cycle [1]. Fibers of
shape-memory alloys can be used to fabricate hybrid composites exhibiting these two
different but related material behaviors. Detailed description of the shape memory
effect and other phenomena associated with martensitic phase transformations, as
well as examples of applications in the context of smart structures, may be found in
references [2–6].
The investigation of SMA structures has different approaches. The finite element

method is an important tool to this aim. Auricchio & Taylor [7] proposed a three-
dimensional finite element model. Lagoudas et al. [8] considered the thermomechanical
response of a laminate with SMA strips. La Cava et al. [9] considered SMA bars and
Bandeira et al. [10] treated truss structures. The response of SMA beams was treated
by Collet et al. [11], which analyzes the dynamical response, as well as Auricchio &
Sacco [12]. Auricchio & Petrini [13,14] presented a solid finite element to describe the
thermo-electro-mechanical problem that is used to simulate different SMA composite
applications. Dual kriging interpolation has been employed with finite element
method in order to describe the shape memory behavior in different reports [15].
Masud et al. [16], Bhattacharyya et al. [17], Liu et al. [18] are other contributions in
this field.
The two-bar truss, also known as the von Mises truss, is an important archetypal

model, largely employed to evaluate stability characteristics of framed structures as
well as of flat arches, and of many other physical phenomena associated with bifur-
cation buckling [19]. The nonlinear dynamics of this system may exhibit a number
of interesting, complex behaviors. The snap-through behavior, represented by a dis-
placement jump, is a classical example of the complexity behind this simple structure.
The dynamic behavior of the two-bar truss is even richer when material non-

linearities are considered. In particular, the present contribution deals with two-bar
trusses made from shape memory materials. Savi & Nogueira [20] and Savi et al. [21]
presented numerical investigations of this kind of structure by considering different
constitutive models to describe the thermomechanical behavior of the SMAs.
In this work, an adaptive fuzzy sliding mode controller is proposed for vibration

suppression in an SMA two-bar truss. A polynomial constitutive model is assumed to
describe the behavior of the shape memory bars. Although this model is simple and
does not present a proper description of the hysteretic behavior, it can qualitatively
represent the general SMA behavior. This system has a rich dynamic response and
can easily reach a chaotic behavior even at moderate loads and frequencies [21].
Regarding the adopted control scheme, due to its robustness to modeling imprecisions
and adaptive feature [22], a smooth sliding mode controller with an embedded fuzzy
inference system is considered. The adoption of a robust and adaptive control law
allows simple constitutive models, such as the polynomial equation considered in



Nonlinear Dynamics of Structures and Energy Harvesting 1543

Fig. 1. Two-bar truss (von Mises truss).

this work, to be used for control purposes. Numerical simulations are carried out in
order to demonstrate the control system performance.
The main goal is the vibration reduction, avoiding some critical responses as

snap-through behavior. A linear actuator is employed to help this control procedure
and therefore, the SMA actuation is not employed for the control purposes. In this
regard, we are investigating an SMA structure that needs an appropriate control
using external actuators. It is important to highlight that SMA properties are
being used to achieve other goals than control. This situation is common in distinct
applications that include aerospace systems as self-erectable structures.

2 Dynamic model

The two-bar truss is depicted in Fig. 1. This plane, framed structure, is formed by
two identical bars, free to rotate around their supports and at the joint.
In the present investigation, we consider a shape memory two-bar truss where

each bar presents the shape memory and pseudoelastic effects. The two identical bars
have length L and cross-sectional area A. They form an angle ϕ with a horizontal line
and are free to rotate around their supports and at the joint, but only on the plane
formed by the two bars (Fig. 1). The critical Euler load of both bars is assumed to
be sufficiently large so that buckling will not occur in the simulations reported here.
We further assume that the structure’s mass is entirely concentrated at the

junction between the two bars. Hence, the structure is divided into segments
without mass, connected by nodes with lumped mass that is determined by static
considerations. We consider only symmetric motions of the system, which implies
that the concentrated mass, m, can only move vertically. The symmetric, vertical
displacement is denoted by X. Under these assumptions, the dynamic behavior is
expressed through the following equation of motion

−2F sinϕ− cẊ + P = mẌ (1)

where F is the force on each bar, P is an external force and cẊ is a linear viscous
damping term used to represent all dissipation mechanisms.
There are several works dedicated to the constitutive description of the thermo-

mechanical behavior of shape memory alloys [2,3]. In this article, we employ poly-
nomial constitutive model to describe the thermomechanical behavior of the SMA
bars [23,24]. Despite the simplicity of this model, it allows an appropriate qualitative
description of the dynamical response of the system. Its major drawback is the
hysteresis description. In this regard, for control purposes, it should be appropriate
with robust controllers that could deal with unmodelled dynamics. Here, dissipation
process is represented by an equivalent viscous damping term.
Polynomial model is concerned with one-dimensional media employing a sixth

degree polynomial free energy function in terms of the uniaxial strain, ε. The form of
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the free energy is chosen in such a way that its minima and maxima are respectively
associated with the stability and instability of each phase of the SMA. As it is usual
in one-dimensional models proposed for SMAs [25], three phases are considered:
austenite (A) and two variants of martensite (M+, M-). Hence, the free energy
is chosen such that for high temperatures it has only one minimum at vanishing
strain, representing the equilibrium of the austenitic phase. At low temperatures,
martensite is stable, and the free energy must have two minima at non-vanishing
strains. At intermediate temperatures, the free energy must have equilibrium points
corresponding to both phases. Under these restrictions, the uniaxial stress, σ, is a
fifth-degree polynomial of the strain [25], i.e.

σ = a1(T − TM )ε− a2ε3 + a3ε5 (2)

where a1, a2 and a3 are material constants, and T the temperature, while TM is
the temperature below which the martensitic phase is stable. If TA is defined as
the temperature above which austenite is stable, and the free energy has only one
minimum at zero strain, it is possible to write the following condition,

TA = TM +
1

4

a22
a1a3

(3)

Therefore, the constant a3 may be expressed in terms of other constants of the
material. Now, the following strain definition is considered,

ε =
L

L0
− 1 = cosϕ0

cosϕ
− 1 (4)

with L0 and ϕ0 representing the nominal values of L and ϕ, respectively.
At this point, we can use the constitutive Eq. (2) together with kinematic Eq. (4)

into the equation of motion (1), obtaining the governing equation of the SMA two-bar
truss:

mẌ + cẊ + 2A
L0
X
{
[a1(T − TM )− 3a2 + 5a3]+

+ [−a1(T − TM ) + a2 − a3]L0(X2 +B2)−1/2+
+ [3a2 − 10a3] 1L0 (X2 +B2)1/2+
+ [−a2 + 10a3] 1L20 (X

2 +B2)+

− 5a3
L30
(X2 +B2)3/2 + a3

L40
(X2 +B2)2

}
= P (t)

(5)

where B is the horizontal projection of each truss bar (Fig. 1).
Considering a periodic excitation P = P0 sin(ωt), Eq. (5) may be written in non-

dimensional form as

x′ = y
y′ = γ sin(Ωτ)− ξy + x{− [(θ − 1)− 3α2 + 5α3]+

+ [(θ − 1)− α2 + α3](x2 + b2)−1/2 − [3α2 − 10α3](x2 + b2)1/2+
+ [−α2 + 10α3](x2 + b2) + 5α3(x2 + b2)3/2 − α3(x2 + b2)2

}
(6)

where ξ is a non-dimensional viscous damping coefficient. The dissipation due to hys-
teretic effect may be considered by assuming an equivalent viscous damping related to
this parameter. Moreover, the following non-dimensional parameters are considered:

x =
X

L
, γ =

P0

mL0ω
2
0

, ω20 =
2Aa1TM
mL0

, Ω =
ω

ω0
, τ = ω0t,

θ =
T

TM
, α2 =

a2

a1TM
, α3 =

a3

a1TM
, b =

B

L0
and (·)′ = d(·)

dτ
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Fig. 2. Actuated truss structure.

3 Controller design

According to Bessa and Barrêto [22], adaptive fuzzy inference systems could be
combined with smooth sliding mode controllers to improve the overall performance
of the control system. This approach has been successfully employed in several
applications, ranging from underwater robotic vehicles [26,27] and electro-hydraulic
actuated systems [28] to chaos control in a nonlinear pendulum [29,30].
In this work, the proposed control problem is to ensure that, even in the

presence of modeling inaccuracies and external disturbances, the state vector
x = [x, y] will be stabilized in a desired state xd = [xd, yd], i.e. the error vector
x̃ = [x̃, ỹ] = [x− xd, y − yd]→ 0 as τ →∞.
In order to ensure the stabilization, a linear actuator is supposed to be installed

vertically at the junction between the two bars, as illustrated in Fig. 2. The combi-
nation of linear actuators with shape memory elements enables the development of
variable geometry trusses that also have the ability of self-attenuate their vibration
levels. This kind of adaptive structure could be very useful, for example, in aerospace
applications.
On this basis, the related control variable u must be added to the equation of

motion (6), which for control purposes could be simply rewritten as

x′ = y

y′ = f + d+ u
(7)

where u is the control action, d = γ sin(Ωτ) is an external disturbance assumed to be
unknown, and f = −ξy+x{−[(θ−1)−3α2+5α3]+ [(θ−1)−α2+α3](x2+ b2)−1/2−
[3α2 − 10α3](x2 + b2)1/2 + [−α2 + 10α3](x2 + b2) + 5α3(x2 + b2)3/2 − α3(x2 + b2)2}.
Regarding the development of the control law, the following assumptions must be

made:

Assumption 1 The state vector x is available.

Assumption 2 The function f is unknown but bounded by a known function of x,

i.e. |f̂(x)− f(x)| ≤ F(x) where f̂ is an estimate of f .
Assumption 3 The disturbance d is unknown but bounded, i.e. |d| ≤ D.
Now, according to the control strategy described in [22] and considering the switch-

ing variable as s = ỹ + λx̃, the adaptive fuzzy sliding mode controller for the shape
memory two-bar truss can be defined with the combination of an equivalent control

û = −f̂−d̂(s)−λỹ and another term, −Ksat(s/φ), to confer robustness to the system:

u = −f̂ − d̂(s)− λỹ −Ksat(s/φ) (8)
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where d̂ is an estimate of d, K is a positive gain, φ is a strictly positive constant that
represents the boundary layer thickness and sat(s/φ) is defined as

sat(s/φ) =

{
sgn(s) if |s/φ| ≥ 1
s/φ if |s/φ| < 1

Considering Assumptions 2 and 3, the robustness of the adopted adaptive fuzzy
sliding mode controller against parametric uncertainties, modeling inaccuracies and
external disturbances is assured by defining the gain K according to [22]:

K ≥ η + F +D + |d̂| (9)

where η is a strictly positive constant related to the time required to reach the sliding
surface.
In order to obtain a good approximation to the disturbance d, the estimate d̂ is

computed directly by an adaptive fuzzy algorithm. According to Kosko [31], fuzzy
systems can be considered as universal approximator, and hence, they can approx-
imate any function on a compact set to an arbitrary accuracy. The adopted fuzzy
inference system was the zero order TSK (Takagi–Sugeno–Kang) [32], whose rules
can be stated in a linguistic manner as follows:

If s is Sr then d̂r = D̂r ; r = 1, 2, . . . , N

where Sr are fuzzy sets, whose membership functions could be properly chosen, and
D̂r is the output value of each one of the N fuzzy rules.
Considering that each rule defines a numerical value as output D̂r, the final output

d̂ can be computed by a weighted average:

d̂(s) = D̂TΨ(s) (10)

where D̂ = [D̂1, D̂2, . . . , D̂N ] is the vector containing the attributed values D̂r to
each rule r, Ψ(s) = [ψ1(s), ψ2(s), . . . , ψN (s)] is a vector with components ψr(s) =

wr/
∑N
r=1 wr and wr is the firing strength of each rule.

To ensure the best possible estimate d̂(s) to the disturbance d, the vector of
adjustable parameters can be automatically updated by the following adaptation
law:

˙̂D = ϑsΨ(s) (11)

where ϑ is a strictly positive constant related to the adaptation rate.
A detailed discussion on the boundedness of all closed-loop signals and the con-

vergence properties of the adaptive fuzzy sliding mode control of nth-order uncertain
nonlinear systems is presented in [22].

4 Numerical simulations

Numerical simulations are now in focus exploring the controller capability to perform
vibration reduction in smart structures. A fourth-order Runge-Kutta scheme is
adopted. Initially, we illustrate the rich dynamic behavior of the shape memory
two-bar truss. Time steps are chosen according to ∆τ = π/1000Ω. Uncontrolled
dynamics of the two-bar truss was previous analyzed by Savi et al. [21], and some of
these results are used here as references. In all simulations, the material properties
presented in Table 1 are used. These values are chosen in order to match experimental
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Table 1. Material Properties.

a1 (MPa/K) a2 (MPa) a3 (MPa) TM (K) TA (K)

523.29 1.868× 107 2.186× 109 288 364.3

Fig. 3. Stress-strain curve: experimental and predicted by polynomial model.

data obtained by Sittner et al. [33] for a Cu-Zn-Al-Ni alloy at 373K (see Fig. 3).
For the data in Table 1, the parameters defined in Eq. (6) assume the values:
α2 = 1.240 × 102 and α3 = 1.450 × 104. We further let b = 0.866, corresponding to
a two-bar truss with an initial position ϕ0 = 30

◦.
Free vibration analysis of the uncontrolled SMA two-bar truss shows that it

has several equilibrium points that are temperature dependent. It is well known
that the elastic von Mises truss presents three equilibrium points due to kinematics
nonlinearity. Of those, two are stable while the other one is unstable. In the case
of a shape memory two-bar truss, constitutive nonlinearity introduces a different
behavior. At low temperatures, where the martensitic phase is stable, there are seven
equilibrium points, four of them stable while the others are unstable. By considering
a higher temperature, where both martensitic and austenitic phases may coexist, the
system exhibits five unstable and six stable equilibrium points. At an even higher
temperature, where only the austenitic phase is present, the system has one unstable
and two stable equilibrium points. See Savi et al. [21] for more details about free
vibration analysis. These scenarios give an idea about the complex behavior of the
SMA two-bar truss, especially when forced vibration is of concern.
A high temperature forced vibration behavior (θ = 1.30), where the austenitic

phase is stable, is now in focus. Figure 4(a) shows the bifurcation diagram for γ,
with Ω = 0.1 and ξ = 0.01. It could be easily observed that the shape memory
two-bar truss presents both periodic and chaotic behavior for different values of γ.
Considering, as for instance γ = 0.015, Fig. 4(b) presents the Poincaré section with
a strange attractor, which illustrates the chaotic motion of the system.
By assuming low temperature forced vibration behavior (θ = 0.69), where the

martensitic phase is stable, Fig. 5(a) shows the related bifurcation diagram for γ,
with Ω = 0.5 and ξ = 0.05. Periodic and chaotic behavior are again observed for
different values of γ. Figure 5(b), for example, presents the Poincaré section for
γ = 0.020 with the strange attractor corresponding to chaotic dynamics.
The controller capabilities are now investigated. Sampling rates of 200Ω/π for

control system and 1000Ω/π for dynamical model are assumed. In order to demon-
strate that the adopted control scheme can deal with both modeling inaccuracies
and external disturbances, an uncertainty of ±20% over the values of α2 and α3
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γ γ = 0.015

Fig. 4. Chaotic response for θ = 1.30, Ω = 0.1 and ξ = 0.01.

γ γ = 0.020

Fig. 5. Chaotic response for θ = 0.69, Ω = 0.5 and ξ = 0.05.
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Fig. 6. Controller performance for θ = 1.30, Ω = 0.1, ξ = 0.01 and γ = 0.015.

is considered. Moreover, the periodic excitation is treated as an unknown external
disturbance. Under this assumption, γ sin(Ωτ) is not taken into account within
the design of the control law. On this basis, it is assumed estimation values as

α̂2 = 10
2 and α̂3 = 1.15 × 104. The other estimates in f̂ are chosen based on

the assumption that model coefficients are perfectly known. Besides, the following
parameters are adopted: F = 0.05; D = 0.05; φ = 0.1; λ = 0.6; η = 0.03 and ϑ = 0.1.
Concerning the fuzzy system, trapezoidal (at the borders) and triangular (in the
middle) membership functions are adopted for Sr, with the central values defined
respectively as C = {−5.0; −1.0; −0.5; 0.0; 0.5; 1.0; 5.0}×10−2. It is also important
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Fig. 7. Stabilization error for θ = 1.30, Ω = 0.1, ξ = 0.01 and γ = 0.015.
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Fig. 8. Controller performance for θ = 0.69, Ω = 0.5, ξ = 0.05 and γ = 0.020.
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Fig. 9. Stabilization error for θ = 0.69, Ω = 0.5, ξ = 0.05 and γ = 0.020.

to emphasize that the vector of adjustable parameters is initialized with zero values,
D̂ = 0, and updated at each iteration step according to the adaptation law (11).
The stabilization of the state vector in the neighborhood of one of the equilibrium

points of the shape memory two-bar truss [21] is carried out. This approach shows
that the adopted control scheme can significantly reduce the vibration level and
also avoid the undesired snap-through behavior. Figures 6 and 7 show the obtained
results considering xd = [0.5, 0.0], θ = 1.30, Ω = 0.1, ξ = 0.01 and γ = 0.015, and
Figs. 8 and 9 present the corresponding results for xd = [0.68, 0.0], θ = 0.69, Ω = 0.5,
ξ = 0.05 and γ = 0.020. Note that the chaotic behavior with large amplitudes of the
uncontrolled respose is replaced by a regular behavior with small amplitudes around
the equilibrium point.
As observed in Figs. 6–9, even in the presence of modeling inaccuracies and

external disturbance, the adaptive fuzzy sliding mode controller (AFSMC) is able to
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provide the desired stabilization with a small associated error. This is an important
point to treat complex systems as SMA structures since it allows the use of simple
constitutive models for control purposes.
It should also be highlighted that the proposed control law provides a smaller

stabilization error when compared with the conventional sliding mode controller
(SMC), Figs. 7 and 9. By considering simulation purposes, the AFSMC can be easily
converted to the classical SMC by setting the adaptation rate to zero, ϑ = 0.

5 Concluding remarks

In this paper, an adaptive fuzzy sliding mode controller is considered for vibration re-
duction in a shape memory two-bar truss. A polynomial constitutive model is assumed
to describe the constitutive behavior of the bars. Despite the deceiving simplicity, this
model allows an appropriate qualitative description of system dynamics, which can
exhibit chaotic behavior. Numerical simulations show the robustness of the AFSMC
against modeling inaccuracies and external disturbances. The improved performance
over the conventional sliding mode controller is also demonstrated. It should be
highlighted that the controller robustness to modeling inaccuracies is an important
issue that allows the use of a simple constitutive model for control purposes.
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