
Reinforcement Learning of Depth Stabilization
with a Micro Diving Agent

Gerrit Brinkmann1, Wallace M. Bessa2, Daniel-A. Duecker1, Edwin Kreuzer1, and Eugen Solowjow1,3

Abstract— Reinforcement learning (RL) allows robots to solve
control tasks through interaction with their environment. In this
paper we study a model-based value-function RL approach,
which is suitable for computationally limited robots and light
embedded systems. We develop a diving agent, which uses the
RL algorithm for underwater depth stabilization. Simulations
and experiments with the micro diving agent demonstrate its
ability to learn the depth stabilization task.

I. INTRODUCTION

Most robot control problems are solved with approaches

based on feedback control theory, e. g. the PID regulator.

However, for autonomy it is crucial that robots become

capable in solving control tasks on their own. Reinforcement

learning (RL) is a principled framework that allows agents to

learn behaviours through interactions with the environment.

In this work we study RL for performing a low-level control

task on a highly embedded micro underwater robot.

The core idea of RL is to provide the robot with a high-

level specification of what to do instead of how to do

it. Reinforcement learning can be distinguished in value-

function based methods and policy search [1]. In policy

search robots learn a direct mapping from states to actions.

In value-function-based approaches robots learn a value

function, an intermediate structure, and derive actions from

the value function. Both, policy search and value-function-

based approaches can either be model-based or model-free.

Model-free methods do not consider the dynamics of the

world. Model-based methods incorporate a model of the

world dynamics, which is learnt from data. While model-

free methods are in general computationally cheaper, they

require more data to solve the task.

Early work on reinforcement learning mainly focussed on

value-function-based algorithms [2], [3]. However, most of

the recent RL successes have been achieved with policy-

search methods, e. g. acrobatics with helicopters [4] or

controlling an inverted pendulum [5]. Value-function based

RL methods have been successfully applied to e. g. control

Research supported by the German Research Foundation (DFG) under
grant 250508151 (Kr 752/33-1). The work of W. M. Bessa was supported
by the Alexander von Humboldt Foundation and the Brazilian Coordination
for the Improvement of Higher Education Personnel.

1Authors are with the Institute of Mechanics and Ocean Engineering,
Hamburg University of Technology, Germany. 2Author is with the Depart-
ment of Mechanical Engineering, Federal University of Rio Grande do
Norte, Brazil. 3Author is with Siemens Corporate Technology, Berkeley,
CA, USA.

*Authors are listed in alphabetical order.
gerrit.brinkmann@tuhh.de, wmbessa@ct.ufrn.br,
daniel.duecker@tuhh.de, kreuzer@tuhh.de,
eugen.solowjow@siemens.com.

problems in robot-soccer [6], [7], [8]. It should be noted that

the recent combination of deep neural nets and RL provides

novel methods coined deep RL [9]. However, applications

of deep RL are still not feasible on the limited hardware of

micro robots. While RL with sufficient computational power

has been proven feasible, the question remains to what extend

computationally limited robots can perform RL.

Micro underwater agents have became a popular research

topic in recent years [10], [11]. They can be deployed

for oceanographic and industrial monitoring. An important

problem in underwater robotics is depth stabilization. The

problem resembles the inverted pendulum problem, because

in both cases the desired state is an unstable equilibrium. The

depth stabilization problem can be efficiently solved with

feedback control [12]. However, this contribution explores

if depth stabilization can also be achieved through RL.

Unlike in aerial robotics [13], only few studies exist where

RL has been applied to underwater robots, e. g. [14] or

[15]. The task of depth stabilization has all challenges of

the underwater domain, including hydrodynamic effects and

slow actuator dynamics, while being simple enough for

studying RL feasibility.

The contributions of this paper are two-fold. First, we

introduce a value-function based RL algorithm for learn-

ing depth stabilization. The learning algorithm is studied

in simulations and experiments. It is suitable for highly

embedded micro robots with limited computational resources

and memory. Second, we present the design of a micro diving

agent, which can be used for studying a variety of control and

learning problems in the underwater setting. It is an improved

version of the diving agent presented in [12].

The remainder of this paper is structured as follows.

Section II introduces the problem of depth stabilization.

Section III describes the RL algorithm for learning depth

stabilization. In Section IV the micro diving agent is intro-

duced, which serves as a hardware testbed. Simulation and

experimental results are presented in Section V. Section VI

draws conclusions and presents and outlook.

II. PROBLEM STATEMENT

Consider a submerged diving agent whose state is defined

by its depth z and velocity ż as illustrated in Fig. 1. Figure 1

shows the forces acting on a dive agent of mass md . The

forces are the gravitational force FG = md g , the buoyancy

force FB, and the hydrodynamic force FD, which consist

of damping and added mass. The diving agent has a fixed

volume V d,0 and an adjustable volume V d,a, which is used

2018 IEEE International Conference on Robotics and Automation (ICRA)
May 21-25, 2018, Brisbane, Australia

978-1-5386-3081-5/18/$31.00 ©2018 IEEE 6197

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Downloaded on May 19,2020 at 19:34:19 UTC from IEEE Xplore. Restrictions apply.

z, ż, z̈

S

FG

FB

FD

g

Fig. 1: Forces acting on the diving agent.

for actuation. The buoyancy force FB can be computed as

FB = ρw g(V d,0 +V d,a) , (1)

where ρW is the density of water.

The goal of depth stabilization is to control V d,a to main-

tain a desired depth zd. We want to solve this control problem

through reinforcement learning without prior knowledge of

any system or actuator dynamics. The challenges are due to

the unknown hydrodynamic effects and the slow actuator

dynamics. The time constant of volume adjustance is in

general similar to the system dynamics. Also, the adjustable

volume is small compared to the fixed volume and hence the

maximum control force is also small and constrained.

III. REINFORCEMENT LEARNING FRAMEWORK

This section describes the RL algorithm, which is de-

ployed for training the diving agent to learn depth stabi-

lization.

We treat the depth stabilization problem as a standard

Markov decision process (MDP) consisting of states S,

actions A, a reward function R(s,a) and the state transition

probability matrix PPP(s′ |s,a). By taking an action a ∈ A in

state s ∈ S the agent transitions to a new state s′ according

to PPP(s′ |s,a) and receives a reward. The value of a state s
is determined by the value function v(s) while the value of

a state-action pair is determined by the state-action-value

function q(a,s) . By iterating over the Bellmann equation

the optimal action-value function q∗(a,s) can be obtained.

The optimal policy π(s) is then π(s) = argmina q∗(a,s).
Our framework for learning depth stabilization is derived

from model-based dynamic programming (DP) with initially

unknown model and with generalized policy iteration (GPI).

The value function is evaluated during the operation of

the agent. After each episode parameters are updated and

policy evaluation is performed. We refer to [2] for a concise

introduction.

1) Reinforcement Learning Task: The state-space S con-

sists of agent depth z and velocity ż. Figure 2 shows the

discretized state-space. A zone around the target depth zd,

bounded by zTol, defines the learning region, which in this

contribution always consists of 101 states. A finer discretiza-

tion is not feasible due to the limited hardware of the micro

robot deployed in the experiments. Every position outside of

Algorithm 1 Reinforcement Learning Algorithm

1: procedure RLALGORITHM

2: while true do
3: s =getState(z, ż)

4: a =selectNextAction(s, vk(s), PPP(s′ |s,a), RRR(s,a))
5: perform action a
6: s′ = getState(z, ż)

7: get reward R
8: updateSystemDynamicsModel(R, s, s′, CCC(s,s′,a),

RRR(s,a), RRRc(s,a))
9: if s′ = sT then

10: policyIteration(vk(s), PPP(s′ |s,a),RRR(s,a))
11: re-initiate next episode

12: end if
13: end while

this area is considered to be the terminal state sT. Reaching

sT leads to the termination of a learning episode and the start

of a new episode.

The action space A consists of two actions. Action a1

reduces the adjustable volume V d,a and hence the buyoncy

force. Action a2 increases the adjustable volume. The agent

receives a negative reward R(s′,a), which punishes its current

distance from the desired depth zd:

R(s′,a) =−|z− zd| . (2)

Furthermore, a high negative reward is given for reaching

the terminal state.
2) Learning Algorithm: The overall algorithm for learn-

ing the depth stabilization task is depicted in Alg. 1. Indices k
and t refer to the k-th learning episode and the t-th timestep,

respectively.

The algorithm runs in a loop with typical loop periods

between 0.02 s and 0.2 s. At the beginning of each loop, the

agent evaluates its current state st . Then, it selects an action

at , which is executed. The action selection is based on the

state st , the transition probability matrix PPP(s′ |s,a) and the

value functions v(s). While performing at , the dive agent

may change its state. Therefore, z and ż are analyzed again

to capture the new state s′t+1. Additionally, a reward Rt+1 is

provided.

For updating the dynamics model, the agent keeps track

of all transitions from s to s′. If s′ is the terminal state of

the system, v(s), RRR(s,a), and PPP(s′ |s,a) are updated and the

next episode is initialized.
3) Action Selection: In each time step the agent selects an

action. The decision is based on the state s of the system, as

well as the dynamics model PPP(s′ |s,a) and the reward matrix

RRR(s,a). Algorithm 2 selects the action.

First, the action-value matrix QQQ(s,a) for both actions

a1 and a2 is computed, whereby γ is the discount factor.

Note here that instead of using separate rewards for every

combination of s and s′, the rewards are averaged over the

successor states. The action a is determined by comparing

the action-values QQQ(s,a1) and QQQ(s,a2). If the agent would

strictly follow the computed action, it would receive the

6198

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Downloaded on May 19,2020 at 19:34:19 UTC from IEEE Xplore. Restrictions apply.

50 5152 5354 5556 5758 59

70 7172 7374 7576 7778 79

90 9192 9394 9596 9798 99

gz

zd

zd − ztol

zd + ztol

z

−ztol ztol

10 1112 1314 1516 1718 19

20 2122 2324 2526 2728 29

30 3132 3334 3536 3738 39

40 4142 4344 4546 4748 49

60 6162 6364 6566 6768 69

80 8182 8384 8586 8788 89

100 101102 103104 105106 107108 109

ż

terminal state 110

z, ż, z̈

Fig. 2: State-space discretization in the learning region of the RL task. The state-space consists of 101 viable states and

terminal states that are outside of the learning region.

Algorithm 2 Action Selection

1: procedure SELECTNEXTACTION(s, vk(s), PPP(s′ |s,a),

RRR(s,a))
2: QQQ(s,a) = PPP(s′ |s,a)(RRR(s,a)+ γ · vk(s)), ∀ a ∈ a
3: prand := random probability

4: if QQQ(s,a1)> QQQ(s,a2) then
5: a ← a1

6: else
7: a ← a2

8: end if
9: if prand > pexpl then

10: act against action selection

11: end if
12: return a

highest returns according to its current dynamics belief.

In order to explore the state-space, the action selection is

altered with a certain probability pexpl. This allows to update

PPP(s′ |s,a) with new state transition counts.

4) Dynamics Model: The state transition probability

PPP(s′ |s,a) represents the dynamics model. Since the agent

has no initial knowledge of its dynamics model, it has to

learn PPP(s′ |s,a) on-the-fly as well. The algorithm for learning

the dynamics model is shown in Alg. 3.

After performing an action, the agent evaluates its new

state s′. Thereafter, it stores the state transition with respect

to the action in the transition count matrix CCC(s,s′,a). Ad-

ditionally, the received reward is averaged and stored in the

reward count matrix RRRc(s,a). The matrix differs from RRR(s,a)
such that it holds the total averaged rewards from overall

learning, while RRR(s,a) only holds the rewards of the current

episode.

If the successor state is the terminal state sT, all transitions

stored in CCC(s,s′,a) are evaluated with respect to a. After-

Algorithm 3 System Dynamics Model

1: procedure UPDATESYSTEMDYNAMICSMODEL(r, s, s′,
CCC(s,s′,a), RRR(s,a), RRRc(s,a))

2: if a = a1 then
3: CCC(s,s′,a1)←CCC(s,s′,a1)+1

4: RRRc(s′,a1)← RRRc(s′,a1)+ r
5: else
6: CCC(s,s′,a2)←CCC(s,s′,a2)+1

7: RRRc(s′,a2)← RRRc(s′,a2)+ r
8: end if
9: if s = sT then

10: CCC(s,a)← ∑
s′

CCC(s,s′,a) ∀ a ∈ A, s ∈ S

11: PPP(s′ |s,a)←CCC(s,s′,a)/CCC(s,a) ∀ a ∈ A, s ∈ S
12: RRR(s′,a)← RRRc(s′,a)
13: return PPP(s′ |s,a), RRR(s′,a)
14: end if

wards, PPP(s′ |s,a) is updated by computing the probability of

all state transitions initiated from s under action a. Besides

updating the transition probability matrix, the reward matrix

RRR(s,a) is updated by RRRc(s,a).
5) Policy Iteration: An important part of the DP algorithm

is GPI, for which the value function is evaluated and the

policy is improved. After the termination of episode k, policy

iteration is used to calculate an improved value function vk+1

with PPP(s′ |s,a) and RRR(s,a). This value function is then used

during the subsequent episode. The steps of this update are

summarized in Alg. 4.

In order to improve the value function after the k-th

episode, the agent computes the action value matrix QQQ(s,a)
of the system with the current value function vk. By choosing

the maximal action value for each state, a successor value

function v̂k is determined. Due to the improved transition

matrix, the values of possible successor states are backed up

6199

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Downloaded on May 19,2020 at 19:34:19 UTC from IEEE Xplore. Restrictions apply.

more precisely to the value of each state, leading to a better

approximation of an optimal value function. An accurate

state transition model leads to fast convergence to an optimal

policy.

In order to obtain a better approximation of the true state

value, the successor value function is used in a new backup

iteration as vk. This step is repeated until the value function

converges under the given transition and reward matrices.

The iteration is terminated if the difference between vk and

v̂k is smaller than a predefined tolerance ΔvTol . Afterwards,

the value of the state is updated according to vk+1, which is

then used for the action selection process of the next episode

k+1.

Algorithm 4 Policy Iteration

1: procedure POLICYITERATION(vk(s), PPP(s′ |s,a),RRR(s,a))
2: while Δvmax > ΔvTol do
3: v′k(s,a)← PPP(s′ |s,a)vk(s) ∀ a ∈ A
4: QQQ(s,a) = PPP(s′ |s,a)(RRR(s,a)+ γ v′k(s)) ∀ a ∈ A
5: v̂k(s)← max

∀s∈S
(QQQ(s,a1),QQQ(s,a2))

6: Δvmax ← max
s

(v̂k(s)− vk(s))
7: vk(s)← v̂k(s)
8: end while
9: vk+1(s)← vk(s)

10: return vk+1(s)

IV. MICRO DIVING AGENT DESIGN

For experimental evaluation of the presented RL algorithm

a micro diving agent has been designed. The diving agent is a

revised and improved version of the robot introduced in [12].

The diving agent measures the surrounding pressure in order

to change its volume by means of a roller diaphragm. To

make this contribution self-sufficient, we briefly introduce

the design and main specs of the diving agent in what

follows.

The diving agent is shown in Fig. 3. Its diameter

is 70 mm and it weighs approx. 200 g It consists of

a Teensy 3.2 microcontroller board �1 , an MS5803-01BA

pressure sensor (not visible), an external EEPROM board

with two M24M02-DR EEPROM chips (512 kB total) �3 ,

an ESP8266 wifi module �4 , and a shortstroke button
�5 . The dive agent is powered by a 3.7 V lithium polymer

battery with 1 200 mAh capacity �6 , which is used with

an adjustable S7V8A step-up/step-down voltage regulator
�7 , and a Micro BEC �8 . The drive unit consists of

a DRV8334 dual motor driver carrier �2 , powering a

Faulhaber AM1020-V-3-16 stepper motor combined with a

planetary gear (256:1) �9 , a roller diaphragm, and a self-

designed 3d-printed gear/gear rack combination. The total

adjustable volume amounts to 3.7% of the fixed volume.

The diving agent can be operated at up to 10 m water

depth. The operational time on a single charge is 2 hours.

b) Bottom Part

5

6

7

8

1

3

4

2

9

a) Diving Cell

Fig. 3: Illustration of the diving agent components.

V. RESULTS

This section presents results on underwater depth sta-

bilization through reinforcement learning. Simulations and

experiments are performed and analyzed.

A. Simulations

A simulation environment was set up to study the RL

algorithm. The equation of motion of the diving agent

are solved within the simulation environment considering

actuator dynamics and contraints. For all simulated learning

scenarios the boundaries of the state-space according to Fig.

2 are set to zTol = 0.1m and żTol = 0.04 m
s .

In order to obtain a farsighted agent, the discount factor is

set to γ = 0.99. The termination criterium for policy iteration

is set to Δ = 0.0001. Policy enforcement, which punishes the

agent if it leaves the learning area, is ensured by allocating

a negative reward of RRR(sT,) = −10. Moreover, a linearly

decreasing exploration probability defined by pexpl(e = 0) =
10% and pexpl(e = 1000) = 0% is chosen for the exploration

of the state space. After the termination of an episode, the

next attempt is initialized at a random position of the learning

area. If the agent is able to remain in the learning area for

300 s, we consider the stabilization as successfull and the

episode is terminated.

In order to evaluate the learning performance we analyze

the duration during which the agent remains within the

desired boundaries. We illustrate this time as a function over

the completed episodes and call it learning curve (LC). An

exemplary LC is depicted in Fig. (4). The learning task

succeeds for the first time in episode 190 and succeeds every

time from episode 400 on. A so called average learning curve

(ALC) is obtained by calculating the moving average over

50 episodes of the LC. The ALC is illustrated in Fig. (4) as

well.

In order to obtain statistical values of the algorithm

performance we repeat the learning task 100 times, whereby

6200

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Downloaded on May 19,2020 at 19:34:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 4: Learning curve (in black) and moving average of

learning curve (in red).

Fig. 5: Median and interquartile range (IQR) of the ALC

obtained from 100 learning trials.

each time 400 episodes are run. The resulting ACL is shown

in Fig. 5. Due to the inherent stochasticity of the dynamics

and the learning algorithm, the learning curve is probabilistic.

Hence, the median of the ALC and the interquartile range

(IQR) of the ALC are illustrated. The median shows that

the agent finds a policy after 230 episodes, after which it

never fails the task again. For the 25-th percentile range the

agent is even able to obtain such a policy after 150 episodes.

Figure 6 shows the value function and Fig. 7 the policy in the

state-space after the task has been learnt. Both are averaged

over 100 performed simulations. As one would expect, the

values of the states decrease with increasing distance from

zd. In order to maximize the expected return, the agent tries

to avoid states which are located at the boundary of the

state space. This is also represented by the policy. The agent

chooses its actions to achieve small velocities. However, the

Fig. 6: Average value function obtained from 100 policies.

Fig. 7: Policy obtained from 100 policies.

action selection in regions with small velocities is altered in

a way so that the agent tries to reduce the distance to the

target depth.

B. Experiments

The RL algorithm is implemented on the diving agent,

which was introduced in Section IV. The goal is to show that

the agent is able to learn a policy for depth stabilization. The

study is considered a success, if the diving agent achieves

stabilization for 300 s, which demonstrates that it has learnt

a policy for stabilization.

In order to implement the algorithm, the methods must be

6201

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Downloaded on May 19,2020 at 19:34:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 8: Learning curve for the experimental validation of the

RL algorithm.

adjusted to cope with the operational limits of the embedded

hardware. The microcontroller board is not able to store

the matrices in its dynamic memory. Thus, a sparse matrix

formulation is used to reduce the required memory. The agent

can only measure its depth but not its velocity, a sliding mode

observer is implemented for velocity estimation [16].

After each episode, the diving agent has to be guided

back into the learning area before a new episode can be

initiated. This is performed by a feedback controller, which

is a regular sliding controller (SC) [17]. If the agent reaches

a terminal state, the SC is activated in order to stabilize

the agent at a random depth inside of the learning region,

which is then used as the new initial depth for the subsequent

learning episode. By starting in random positions, the agent

explores the state-space faster, which leads to a more efficient

development of the system dynamics model. After the agent

is stabilized by the SC, the RL algorithm takes over with the

next attempt of stabilizing the diving agent.

The desired target depth is set to be zd = 0.4m. The

position tolerance is chosen to zTol = 0.15m and the velocity

tolerance is set to żTol = 0.03 m
s .

An LC for an experimental run is shown in Fig. 8. It

demonstrates that the diving agent has learnt depth stabiliza-

tion in episode 48. In order to show that the first success was

no coincidence, the experiment was pursued until the target

time was reached five times. The total learning time up to

this point is 17 min. Note, that the agents remains up to 300 s

in the learning region before a new episode begins, which

is counted towards the learning time. After the first success,

the agent shows a worse performance until the target time is

reached again in episode 57. Afterwards, the target time is

reached in episodes 63, 65, and 67 after which the experiment

is terminated. This shows that the agent improves its policy

with increasing number of performed episodes on the task.

The value function of the agent after completing episode

48 are shown in 9. Not all states have been visited in the

Fig. 9: Value function after the first success in the experiment

in episode 47.

Fig. 10: Depth (in blue) of the diving agent during the

episode of first successful stabilization. Desired depth (in

green) and learning boundaries (in red) are shown as well.

experiment. This can have two reasons. First, the exploration

of the state-space can be insufficient at this point of learning.

Second, the system’s dynamics can prevent the agent from

reaching those states. As in simulations, two regions with low

values emerge from the corners with high velocity directed to

the terminal state. However, these regions are larger and fade

out over more states. The qualitative structure of the value

function for both experiments and simulations is equivalent.

Figure 10 visualizes the diving agent depth trajectory

inside of the learning region for a succesfully learnt policy.

Figure 10 demonstrates that the diving agent positions itself

in the center of the learning region during the stabilization

6202

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Downloaded on May 19,2020 at 19:34:19 UTC from IEEE Xplore. Restrictions apply.

and tends to return to the center. Additionally, the agent

oscillates. This behavior is expected because a selected

action is consistent within each state. Only when the state

of the agent changes, a different action can be chosen

by the agent. This leads to the oscillation of the agent

between states that have different actions allocated in the

policy. The effects of performing an action that counteracts

the movement of the agent only occurs after some time

delay. Hence, the oscillation amplitude can be reduced by

adjusting the velocity and position ranges of the state-space

or by a finite discretization. However, the limited memory

of the given hardware setup prevents the implementation

of more states in the state-space. In order to solve this

problem, more dynamic memory is required for storing the

state transition matrix.

In summary, the experiments show that the RL algorithm is

able to learn a low-level control task on a highly embedded

computationally constrained hardware platform. The agent

finds a policy that provides stabilization within the learning

zone.

VI. CONCLUSION AND FUTURE WORK

This paper investigated model-based value-function re-

inforcement learning (RL) with dynamic programming for

embedded and computationally limited mechatronic systems.

The task of underwater depth stabilization has been chosen

for benchmarking purposes. It resembles the inverted pendu-

lum problem because in both cases an unstable equilibrium

is stabilized. A diving agent has been designed and built

to evaluate the RL algorithm. The agent learns the system

dynamics model in order to improve its value function, which

is used for stabilizing the agent in a bounded area. Depth

stabilization through learning was investigated in simulations

as well as in water tank experiments.

The experiments showed that the agent is able to learn

a policy for depth stabilization. However, it required 47

episodes to learn the task. The main reason for the slow

convergence is that the state-space only includes depth and

velocity, but not the state of the adjustable volume. How-

ever, since the volume adjustment is slow, neglecting its

dynamics deteriorates the learning performance. The same

action (increasing volume or decreasing volume) can have a

completely different effect on the successor state for different

states of the adjustable volume. As a consequence, the

state transition matrices of both possible actions do only

differ by a small probability fraction. Despite this missing

information the agent was able to learn the stabilization task

in experiments.

Future work will cover the improvement of the introduced

RL algorithm. Different position and velocity discretizations

of the state space will be investigated. Moreover, the state

discretization of the task will be refined in order to enable the

agent to counteract disturbances quicker. It is expected that

this will result in smaller oscillations during the stabilization

and increase the agent’s proximity to the target depth.

Furthermore, the dynamics model will be revised in order

to enhance the action selection of the agent. The state-space

will be augmented with the state of the adjustable volume.

This should lead to a better performance for stabilization and

a decrease of the total learning time for finding a control

policy. The diving agent will be augmented with additional

dynamic memory.

REFERENCES

[1] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[2] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduc-
tion. MIT press Cambridge, 1998.

[3] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence Research, vol.
4, pp. 237–285, 1996.

[4] P. Abbeel, A. Coates, M. Quigley, and A. Y. Ng, “An application of
reinforcement learning to aerobatic helicopter flight,” in Advances
in Neural Information processing Systems (NIPS), 2007, pp. 1–8.

[5] M. Deisenroth and C. E. Rasmussen, “PILCO: A model-based and
data-efficient approach to policy search,” in Proceedings of the
28th International Conference on machine learning (ICML), 2011,
pp. 465–472.

[6] T. Hester, M. Quinlan, and P. Stone, “Generalized model learning
for reinforcement learning on a humanoid robot,” in IEEE Inter-
national Conference on Robotics and Automation (ICRA), 2010,
pp. 2369–2374.

[7] ——, “RTMBA: A real-time model-based reinforcement learning
architecture for robot control,” in IEEE International Conference
on Robotics and Automation (ICRA), 2012, pp. 85–90.

[8] T. Hester and P. Stone, “Intrinsically motivated model learning for
developing curious robots,” Artificial Intelligence, vol. 247, pp. 170–
186, 2017.

[9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
et al., “Human-level control through deep reinforcement learning,”
Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[10] A. Hackbarth, E. Kreuzer, and E. Solowjow, “HippoCampus: A
Micro Underwater Vehicle for Swarm Applications,” in IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS),
2015, pp. 2258–2263.

[11] A. Griffiths, A. Dikarev, P. R. Green, B. Lennox, X. Poteau, and
S. Watson, “AVEXIS: Aqua Vehicle Explorer for In-Situ Sensing,”
IEEE Robotics and Automation Letters, vol. 1, no. 1, pp. 282–287,
2016.

[12] W. M. Bessa, E. Kreuzer, J. Lange, M.-A. Pick, and E. Solowjow,
“Design and Adaptive Depth Control of a Micro Diving Agent,”
IEEE Robotics and Automation Letters, vol. 2, no. 4, pp. 1871–
1877, 2017.

[13] A. Faust, I. Palunko, P. Cruz, R. Fierro, and L. Tapia, “Learning
swing-free trajectories for UAVs with a suspended load,” in IEEE
International Conference on Robotics and Automation (ICRA),
2013, pp. 4902–4909.

[14] J. Yuh, “Learning control for underwater robotic vehicles,” IEEE
Control Systems, vol. 14, no. 2, pp. 39–46, 1994.

[15] C. Gaskett, D. Wettergreen, A. Zelinsky, et al., “Reinforcement
learning applied to the control of an autonomous underwater ve-
hicle,” in Proceedings of the Australian Conference on Robotics
and Automation (AuCRA), 1999.

[16] Y. Shtessel, C. Edwards, L. Fridman, and A. Levant, Sliding mode
control and observation. Springer, 2014, vol. 10.

[17] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Prentice Hall
Englewood Cliffs, NJ, 1991.

6203

Authorized licensed use limited to: UNIVERSIDADE FEDERAL DO RIO GRANDE DO NORTE. Downloaded on May 19,2020 at 19:34:19 UTC from IEEE Xplore. Restrictions apply.

		2018-09-07T11:51:31-0400
	Preflight Ticket Signature

