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Abstract: Conventional sliding mode controllers are based on the assumption of switching control, but a well-known drawback of
such controllers is the chattering phenomenon. To overcome the undesirable chattering effects, the discontinuity in the control law can
be smoothed out in a thin boundary layer neighboring the switching surface. In this paper, rigorous proofs of the boundedness and
convergence properties of smooth sliding mode controllers are presented. This result corrects flawed conclusions previously reached in
the literature. An illustrative example is also presented in order to confirm the convergence of the tracking error vector to the defined
bounded region.
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1 Introduction

The sliding mode control theory was conceived and de-
veloped in the former Soviet Union by Emelyanov and
Kostyleva[1], Filippov[2], Itkis[3], Utkin[4], and others. How-
ever, a known drawback of conventional sliding mode con-
trollers is the chattering phenomenon due to the discontinu-
ous term in the control law. In order to avoid the undesired
effects of the control chattering, Slotine[5−7] proposed the
adoption of a thin boundary layer neighboring the switching
surface, by replacing the sign function by a saturation func-
tion. This substitution can minimize or, when desired, even
completely eliminate chattering, but turns perfect tracking
into a tracking with guaranteed precision problem, which
actually means that a steady-state error will always remain.

This paper presents a convergence analysis of smooth
sliding mode controllers. The finite-time convergence of the
tracking error vector to the boundary layer is handled us-
ing Lyapunov′s direct method. It is also analytically proven
that, once in boundary layer, the tracking error vector ex-
ponentially converges to a bounded region. This result cor-
rects a minor flaw in Slotine′s work, by showing that the
bounds of the error vector are different from the bounds pro-
vided in [5− 7]. Although the bounds proposed by Slotine
are incorrect, they are until now widely evoked to establish
the boundedness and convergence properties of many con-
trol schemes[8−14]. A simulation example is also presented
in order to illustrate the convergence of the tracking error
vector to the defined bounded region.

2 Problem statement

Consider a class of n-th order nonlinear systems

x(n) = f(xxx) + b(xxx)u (1)

where u is the control input, the scalar variable x is the out-
put of interest, x(n) is the n-th derivative of x with respect
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to time t ∈ [0,∞), xxx = [x, ẋ, · · · , x(n−1)] is the system state
vector, and f, b : Rn → R are both nonlinear functions.

In respect of the dynamic system presented in (1), the
following assumptions will be made.

Assumption 1. The function f is unknown but bounded
by a known function of xxx, i.e., |f̂(xxx)− f(xxx)| 6 F (xxx), where
f̂ is an estimate of f .

Assumption 2. The input gain b(xxx) is unknown but
positive and bounded, i.e., 0 < bmin 6 b(xxx) 6 bmax.

The proposed control problem is to ensure that, even
in the presence of parametric uncertainties and unmodeled
dynamics, the state vector xxx will follow a desired trajectory
xxxd = [xd, ẋd, · · · , x

(n−1)
d ] in the state space.

Regarding the development of the control law, the fol-
lowing assumptions should also be made.

Assumption 3. The state vector xxx is available.
Assumption 4. The desired trajectory xxxd is once differ-

entiable in time. Furthermore, every element of vector xxxd,
as well as x

(n)
d , is available and with known bounds.

Now, let x̃ = x − xd be defined as the tracking error in
the variable x, and

x̃xx = xxx− xxxd = [x̃, ˙̃x, · · · , x̃(n−1)]

as the tracking error vector.
Consider a sliding surface S defined in the state space

by the equation s(x̃xx) = 0, with the function s : Rn → R
satisfying

s(x̃xx) =

(
d

dt
+ λ

)n−1

x̃

conveniently rewritten as

s(x̃xx) = cccTx̃xx (2)

where ccc = [cn−1λ
n−1, · · · , c1λ, c0], and ci states for bino-

mial coefficients, i.e.,

ci =

(
n− 1

i

)
=

(n− 1)!

(n− i− 1)! i!
, i = 0, 1, · · · , n− 1 (3)
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which makes cn−1λ
n−1+· · ·+c1λ+c0 a Hurwitz polynomial.

From (3), it can be easily verified that c0 = 1, for ∀n > 1.
Thus, for notational convenience, the time derivative of s
will be written in the following form:

ṡ = cccT ˙̃xxx = x̃(n) + c̄ccTx̃xx (4)

where c̄cc = [0, cn−1λ
n−1, · · · , c1λ].

Now, let the problem of controlling the uncertain non-
linear system (1) be treated via the classical sliding mode
approach, defining a control law composed of an equivalent
control û = b̂−1(−f̂ +x

(n)
d − c̄ccTx̃xx) and a discontinuous term

−Ksgn(s):

u = b̂−1
(
−f̂ + x

(n)
d − c̄ccTx̃xx

)
−Ksgn(s) (5)

where b̂ =
√

bmaxbmin is an estimate of b, K is a positive
gain, and sgn(·) is defined as

sgn(s) =





−1, if s < 0

0, if s = 0

1, if s > 0.

Based on Assumptions 1 and 2 and considering that
β−1 6 b̂/b 6 β, where β =

√
bmax/bmin, the gain K should

be chosen according to

K > βb̂−1(η + F ) + (β − 1)
∣∣b̂−1(−f̂ + x

(n)
d − c̄ccTx̃xx)

∣∣ (6)

where η is a strictly positive constant related to the reaching
time.

Therefore, it can be easily verified that (5) is sufficient
to impose the sliding condition

1

2

d

dt
s2 6 −η|s|

which, in fact, ensures the finite-time convergence of the
tracking error vector to the sliding surface S and, conse-
quently, its exponential stability.

However, the presence of a discontinuous term in the
control law leads to the well-known chattering effect. To
avoid these undesirable high-frequency oscillations of the
controlled variable, Slotine[5−7] proposed the adoption of a
thin boundary layer, Sφ, in the neighborhood of the switch-
ing surface:

Sφ =
{
x̃xx ∈ Rn

∣∣ |s(x̃xx)| 6 φ
}

(7)

where φ is a strictly positive constant that represents the
boundary layer thickness.

The boundary layer is achieved by replacing the sign
function by a continuous interpolation inside Sφ. It should
be emphasized that this smooth approximation, which will
be called here ϕ(s, φ), must behave exactly like the sign
function outside the boundary layer. There are several op-
tions to smooth out the ideal relay but the most common
choices are the saturation function:

sat

(
s

φ

)
=





sgn(s), if

∣∣∣∣
s

φ

∣∣∣∣ > 1

s

φ
, if

∣∣∣∣
s

φ

∣∣∣∣ < 1

(8)

and the hyperbolic tangent function tanh(s/φ).

In this way, the smooth sliding mode control law can be
stated as follows:

u = b̂−1
(
−f̂ + x

(n)
d − c̄ccTx̃xx

)
−Kϕ(s, φ). (9)

3 Convergence analysis

The attractiveness and invariant properties of the bound-
ary layer are established in the following theorem.

Theorem 1. Consider the uncertain nonlinear system
(1) and Assumptions 1–4. Then, the smooth sliding mode
controller defined by (6) and (9) ensures the finite-time con-
vergence of the tracking error vector to the boundary layer
Sφ, defined according to (7).

Proof. Let a positive-definite Lyapunov function candi-
date V be defined as

V (t) =
1

2
s2

φ

where sφ is a measure of the distance of the current error
to the boundary layer, and can be computed as follows:

sφ = s− φ sat

(
s

φ

)
. (10)

Noting that sφ = 0 in the boundary layer, one has
V̇ (t) = 0 inside Sφ. From (8) and (10), it can be easily
verified that ṡφ = ṡ outside the boundary layer and, in this
case, V̇ becomes

V̇ (t) =sφṡφ = sφṡ = (x(n) − x
(n)
d + c̄ccTx̃xx)sφ =

(
f + bu− x

(n)
d + c̄ccTx̃xx

)
sφ.

Considering that outside the boundary layer, the control
law (9) takes the following form:

u = b̂−1
(
−f̂ + x

(n)
d − c̄ccTx̃xx

)
−Ksgn(sφ)

and noting that f = f̂ − (f̂ − f), we have

V̇ (t) =
[
f + bb̂−1(−f̂ + x

(n)
d − c̄ccTx̃xx)−

bKsgn(sφ)− x
(n)
d + c̄ccTx̃xx

]
sφ =

− [
(f̂ − f)− bb̂−1(−f̂ + x

(n)
d − c̄ccTx̃xx)+

(−f̂ + x
(n)
d − c̄ccTx̃xx) + bKsgn(sφ)

]
sφ.

Therefore, considering Assumptions 1 and 2 and defining
K according to (6), V̇ becomes

V̇ (t) 6 −η|sφ|
which implies V (t) 6 V (0) and that sφ is bounded. From
the definition of s and sφ, respectively (2) and (10), it can
be verified that x̃xx is bounded. Thus, Assumption 4 and (4)
imply that ṡ is also bounded.

The finite-time convergence of the tracking error vector
to the boundary layer can be shown by recalling that

V̇ (t) =
1

2

d

dt
s2

φ = sφṡφ 6 −η|sφ|.

Then, dividing by |sφ| and integrating both sides between
0 and t gives

∫ t

0

sφ

|sφ| ṡφ dτ 6 −
∫ t

0

η dτ
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|sφ(t)| − |sφ(0)| 6 −η t.

In this way, considering treach as the time required to hit
Sφ and noting that |sφ(treach)| = 0, one has

treach 6 |sφ(0)|
η

which guarantees the convergence of the tracking error vec-
tor to the boundary layer in a time interval smaller than
|sφ(0)|/η. ¤

Therefore, the value of the positive constant η can be
properly chosen in order to keep the reaching time, treach,
as short as possible. Fig. 1 shows that the time evolution of
|sφ| is bounded by the straight line |sφ(t)| = |sφ(0)| − η t.

Fig. 1 Time evolution of |sφ|

Finally, the proof of the boundedness of the tracking er-
ror vector relies on Theorem 2.

Theorem 2. Let the boundary layer Sφ be defined ac-
cording to (7). Then, once inside Sφ, the tracking error
vector will exponentially converge to an n-dimensional box
defined according to |x̃(i)| 6 ζiλ

i−n+1φ, i = 0, 1, · · · , n−1},
with ζi satisfying

ζi =





1, for i = 0

1 +
i−1∑
j=0

(
i
j

)
ζj , for i = 1, 2, · · · , n− 1.

(11)

Proof. From the definition of s, (2), and considering
that |s(xxx)| 6 φ may be rewritten as −φ 6 s(xxx) 6 φ, we
have

−φ 6 c0x̃
(n−1) + c1λx̃(n−2) + · · ·+ cn−1λ

n−1x̃ 6 φ. (12)

Multiplying (12) by eλt yields

−φeλt 6 dn−1

dtn−1
(x̃eλt) 6 φeλt (13)

Integrating (13) between 0 and t gives

−φ

λ
eλt +

φ

λ
6 dn−2

dtn−2
(x̃eλt)−

dn−2

dtn−2
(x̃eλt)

∣∣∣∣
t=0

6 φ

λ
eλt − φ

λ
. (14)

(14) can be conveniently rewritten as

− φ

λ
eλt −

(∣∣∣∣
dn−2

dtn−2
(x̃eλt)

∣∣∣∣
t=0

+
φ

λ

)
6 dn−2

dtn−2
(x̃eλt) 6

φ

λ
eλt +

(∣∣∣∣
dn−2

dtn−2
(x̃eλt)

∣∣∣∣
t=0

+
φ

λ

)
. (15)

The same reasoning can be repeatedly applied until the
(n− 1)-th integral of (13) is reached:

− φ

λn−1
eλt −

(∣∣∣∣
dn−2

dtn−2
(x̃eλt)

∣∣∣∣
t=0

+
φ

λ

)
tn−2

(n− 2)!
− · · ·−

(
|x̃(0)|+ φ

λn−1

)
6 x̃eλt 6 φ

λn−1
eλt+

(∣∣∣∣
dn−2

dtn−2
(x̃eλt)

∣∣∣∣
t=0

+
φ

λ

)
tn−2

(n− 2)!
+ · · ·+

(
|x̃(0)|+ φ

λn−1

)

(16)

Furthermore, dividing (16) by eλt, it can be easily verified
that, for t →∞,

− φ

λn−1
6 x̃(t) 6 φ

λn−1
(17)

Considering the (n− 2)-th integral of (13)

− φ

λn−2
eλt −

(∣∣∣∣
dn−2

dtn−2
(x̃eλt)

∣∣∣∣
t=0

+
φ

λ

)
tn−3

(n− 3)!
− · · ·−

(∣∣ ˙̃x(0)
∣∣ +

φ

λn−2

)
6 d

dt
(x̃eλt) 6 φ

λn−2
eλt+

(∣∣∣∣
dn−2

dtn−2
(x̃eλt)

∣∣∣∣
t=0

+
φ

λ

)
tn−3

(n− 3)!
+ · · ·+

(∣∣ ˙̃x(0)
∣∣ +

φ

λn−2

)
(18)

and noting that d(x̃eλt)/dt = ˙̃xeλt + x̃λeλt, by imposing the
bounds (17) to (18) and dividing it again by eλt for t →∞,
we have

−2
φ

λn−2
6 ˙̃x(t) 6 2

φ

λn−2
. (19)

Now, applying the bounds (17) and (19) to the (n−3)-th
integral of (13) and dividing it once again by eλt for t →∞,
we have

−6
φ

λn−3
6 ¨̃x(t) 6 6

φ

λn−3
. (20)

The same procedure can be successively repeated until
the bounds for x̃(n−1) are achieved:

−
(

1 +

n−2∑
i=0

(
n− 1

i

)
ζi

)
φ 6 x̃(n−1) 6
(

1 +

n−2∑
i=0

(
n− 1

i

)
ζi

)
φ (21)

where the coefficients ζi (i = 0, 1, · · · , n − 2) are related
to the previously obtained bounds of each x̃(i) and can be
summarized as in (11).

In this way, by inspection of the integrals of (13), as
well as (17), (19)–(21) and the other omitted bounds, the
tracking error will be confined within the limits |x̃(i)| 6
ζiλ

i−n+1φ, i = 0, 1, · · · , n− 1, where ζi is defined by (11).
¤

Remark 1. Theorem 2 corrects a minor error in [5− 7].
Slotine proposed that the bounds for x̃(i) could be summa-
rized as |x̃(i)| 6 2iλi−n+1φ, i = 0, 1, · · · , n − 1. Although
both results lead to the same bounds for x̃ and ˙̃x, they
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start to differ from each other when the order of the deriva-
tive is higher than one, i > 1. For example, according to
the method of Slotine, the bounds for the second derivative
would be |¨̃x| 6 4φλ3−n not |¨̃x| 6 6φλ3−n, as demonstrated
in Theorem 2.

Remark 2. It must be noted that the n-dimensional
box defined according to the aforementioned bounds is not
completely inside the boundary layer. Considering the at-
tractiveness and invariant properties of Sφ demonstrated in
Theorem 1, the region of convergence can be stated as the
intersection of the boundary layer and the n-dimensional
box defined in Theorem 2. Therefore, the tracking error vec-
tor will exponentially converge to a closed region Φ = {xxx ∈
Rn | |s(x̃xx)| 6 φ and |x̃(i)| 6 ζiλ

i−n+1φ, i = 0, 1, · · · , n− 1},
with ζi defined by (11).

Fig. 2 illustrates the region of convergence Φ, defined ac-
cording to Remark 2, for a second-order system (n = 2).

Fig. 2 Bounds of x(i) for a second-order system

4 Illustrative example

In order to confirm the convergence of the tracking error
vector to the bounded region defined in Remark 2, consider
a controlled Van der Pol oscillator

ẍ− µ(1− x2)ẋ + x = bυ (22)

with a dead-band in the control input defined according to

υ =





u + 0.4, if u 6 −0.4

0, if − 0.4 < u < 0.4

u− 0.4, if u > 0.4.

(23)

The unforced Van der Pol oscillator, i.e., by consider-
ing u = 0, exhibits a limit cycle. The control objective
is to let the state vector xxx = [x, ẋ] track a desired trajec-
tory xxxd = [sin t, cos t] situated inside the limit cycle. Fig. 3
shows the phase portrait of the unforced Van der Pol os-
cillator with the limit cycle, two convergent orbits and the
desired trajectory.

Fig. 3 Phase portrait of the unforced Van der Pol oscillator

The simulation study was performed with an implemen-
tation in C, with sampling rates of 500Hz for control system
and 1 kHz for the Van der Pol oscillator, and the differential
equations were numerically solved using the fourth-order
Runge-Kutta method. The chosen parameters for the Van
der Pol oscillator were b = 1 and µ = 1.

Regarding the controller design, to ratify its robustness
against both structured and unstructured uncertainties, an
uncertainty of ±20% over the value of b was taken into ac-
count, i.e., bmin = 0.8 and bmax = 1.2, and the dead-band
was treated as modeling imprecision, i.e., not considered
in controller design. In this way, for a second-order system
with state vector xxx = [x, ẋ] and s = ˙̃x+λx̃, a smooth sliding
mode controller can be chosen as follows:

u = b̂−1[−µ(1− x2)ẋ + x + ẍd − λ ˙̃x]−Ksat

(
s

φ

)
.

The following parameters were adopted for the controller:
β = 1.22, b̂ = 0.98, η = 0.1, λ = 0.6, φ = 0.1, and F = 0.32.

Considering that the initial state and initial desired state
are not equal, x̃xx(0) = [−2.0,−0.4], Figs. 4–6 show the cor-
responding results for the tracking of xxxd = [sin t, cos t].

As observed in Fig. 6, the tracking error vector is driven
to the proposed region of convergence and remains inside Φ
as t →∞, even in the presence of modeling imprecisions.

Fig. 4 Tracking performance
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Fig. 5 Control action

Fig. 6 Phase portrait of the tracking

5 Conclusions

In this paper, a convergence analysis of smooth sliding
mode controllers was presented. The attractiveness and
invariant properties of the boundary layer as well as the
exponential convergence of the tracking error vector to a
bounded region were analytically proven. This last result
corrected flawed conclusions previously reached in the liter-
ature. Numerical simulations with a Van der Pol oscillator
confirm the convergence of the tracking error vector to the
proposed region of convergence.
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