
immediate
�

Abstract The development of accurate control
systems for underwater robotic vehicles relies on the
adequate compensation of thruster dynamics. Without
compensation, the closed-loop positioning system can
exhibit limit cycles. This undesired behaviour may
compromise the overall system stability. In this work, a
fuzzy sliding-mode compensation scheme is proposed
for electrically actuated bladed thrusters, which are
commonly employed in the dynamic positioning of
underwater vehicles. The boundedness and convergence
properties of the tracking error are analytically proven.
The numerical results suggest that this approach shows a
greatly improved performance when compared with an
uncompensated counterpart.

Keywords Fuzzy Logic, Sliding-Modes, Thruster
Dynamics, Underwater Robotic Vehicles

1. Introduction

The dynamic behaviour of a remotely operated
underwater vehicle (ROV) can be greatly influenced
by the nonlinear dynamics of the vehicle thrusters. In this

way, the implementation of a proper control strategy for
the thruster subsystem is essential for the accurate control
of the entire robotic vehicle.

A growing number of papers dedicated to the dynamic
positioning of ROVs confirms the necessity of the
development of a controller, that could deal with
the inherent nonlinear system dynamics, imprecise
hydrodynamic coefficients, and external disturbances [4].
Many of these works [12, 25–27] address the problem
of the influence of thruster dynamics on overall vehicle
behaviour, and the importance of considering this effect
in the dynamic positioning system.

Traditionally, some mathematical models of the thruster
are used directly to estimate, in a feed-forward manner, the
required voltage (or current) to produce the desired thrust
force. This strategy has simplicity as an advantage and
the fact that it does not require the angular velocity of the
propeller to be measured. On the other hand, it can only
be used with a precise mathematical model of the thruster
system. The adoption of a standard model, available in the
literature but not perfectly suited to the actual thrusters,
is in many situations the reason for the poor tracking
performance of a ROV. It has been previously reported

Wallace M. Bessa, Max S. Dutra and Edwin Kreuzer: Dynamic Positioning  
of Underwater Robotic Vehicles with Thruster Dynamics Compensation

1www.intechopen.com

International Journal of Advanced Robotic Systems

ARTICLE

www.intechopen.com Int. j. adv. robot. syst., 2013, Vol. 10, 2013

1 Department of Mechanical Engineering, Federal University of Rio Grande do Norte, Brazil
2 Department of Mechanical Engineering, Federal University of Rio de Janeiro, Brazil
3 Institute of Mechanics and Ocean Engineering, Hamburg University of Technology, Germany
* Corresponding author E-mail: wmbessa@ufrnet.br

Received 6 Jul 2012; Accepted 29 Apr 2013

DOI: 10.5772/56601

∂ 2013 Bessa et al.; licensee InTech. This is an open access article distributed under the terms of the Creative
Commons Attribution License (http://creativecommons.org/licenses/by/3.0), which permits unrestricted use,
distribution, and reproduction in any medium, provided the original work is properly cited.

Wallace M. Bessa1,*, Max S. Dutra2 and Edwin Kreuzer3

Dynamic Positioning of Underwater 
Robotic Vehicles with Thruster  
Dynamics Compensation
Regular Paper



[27], that this approach can lead to limit cycles in the
closed-loop positioning system. As also shown in [27],
this degradation in the controller performance is specially
critical during low-speed manoeuvres with the vehicle. In
such cases, the dynamic behaviour of underwater robotic
vehicles can be dominated by thruster dynamics.

An alternative approach that may be considered, specially
when a precise mathematical model for the thruster
system cannot be obtained, is the design of a feedback
compensation scheme for thruster dynamics. In this work,
a sliding-mode compensator with fuzzy gain is proposed
to calculate the required voltage for each thruster. The
choice of a variable gain, defined by a fuzzy inference
system, makes a better trade-off between reaching time
and tracking precision possible. The adoption of a
saturation function (instead of a relay function) within the
control law leads to a boundary layer, that can minimize
or, when desired, even completely eliminate chattering.
Through a Lyapunov-like analysis, the boundedness and
convergence properties of the closed-loop compensation
subsystem is proven. Numerical simulations are
carried out to demonstrate the robustness and improved
performance of the compensation strategy.

2. Vehicle Dynamics Model

An adequate model to describe the dynamic behaviour of
an underwater robotic vehicle must include the rigid-body
dynamics of the vehicle and a representation of the
surrounding fluid dynamics. In this context, the ideal
mathematical model would be composed of a system of
ordinary differential equations, to represent rigid-body
dynamics, and partial differential equations to represent
fluid dynamics.

In order to overcome the computational problem of
solving a system with this degree of complexity, in the
majority of publications [1, 3, 4, 7, 13–16, 23, 28] a
lumped-parameters approach is employed to approximate
the vehicle’s dynamic behaviour.

The equations of motion for underwater vehicles can be
presented with respect to an inertial reference frame or
with respect to a body-fixed reference frame, Fig. 1. On
this basis, the equations of motion for underwater vehicles
can be expressed, with respect to the body-fixed reference
frame, in the following vectorial form:

Mν̇ + k(ν)zdvh(ν) + g(x) = τ (1)

where ν = [υx, υy, υz, ωx, ωy, ωz] is the vector of linear
and angular velocities in the body-fixed reference frame,
x = [x, y, z, α, β, γ] represents the position and orientation
with respect to the inertial reference frame, M is the
inertia matrix, which accounts not only for the rigid-body
inertia but also for the so-called hydrodynamic added
inertia, k(ν) is the vector of generalized Coriolis and
centrifugal forces, h(ν) represents the hydrodynamic
quadratic damping, g(x) is the vector of generalized
restoring forces (gravity and buoyancy) and τ is the vector
of control forces and moments.

It should be noted that in the case of remotely operated
underwater vehicles (ROVs), the metacentric height is

Figure 1. Underwater vehicle with both inertial and body-fixed
reference frames.

sufficiently large to provide the self-stabilization of roll
(α) and pitch (β) angles. This particular constructive
aspect also allows the order of the dynamic model to
be reduced to four degrees of freedom, x = [x, y, z, γ],
and the vertical motion (heave) to be decoupled from the
motion in the horizontal plane. This simplification can be
found in the majority of works presented in the literature
[4, 8, 11, 13–15, 19, 28, 29]. Thus, the positioning system of
a ROV can be divided in two different parts: depth control
(concerning variable z), and control in the horizontal plane
(variables x, y and γ).

In this context, considering that control forces and
moments are produced by the thrusters of the vehicle, the
dynamic model of the thruster subsystem is discussed in
the following subsection.

2.1. Dynamic Thruster Model

The steady-state axial thrust (T) produced by marine
thrusters is commonly presented as proportional to the
square of the angular velocity Ω of the propeller [18]. This
quadratic relationship can be conveniently represented by

T = Ct Ω|Ω| (2)

where Ct is a function of the advance ratio and depends on
the constructive characteristics of each thruster.

Taking the dynamical behaviour of the thruster system
into account, Yoerger et al. [27] presented a first order
nonlinear dynamic thruster model with propeller angular
velocity as the state variable. This dynamic model, that can
be represented by Eq. (3) and Eq. (4), is referred to here as
Model 1.

JmspΩ̇ + KvΩ|Ω| = Qm (3)

T = Ct Ω|Ω| (4)

where Jmsp is the motor-shaft-propeller inertia, Kv stays for
a model parameter, and Qm is the input motor torque.

In later works [2, 10, 12], more accurate models employing
lift and drag curves, and that also incorporate some

Int. j. adv. robot. syst., 2013, Vol. 10, 20132 www.intechopen.com



other hydrodynamic effects, such as those caused by
the rotational fluid velocity, are proposed. In all of
these models, a second order dynamic system with
propeller angular velocity and axial fluid velocity as state
variables is used. However, during real operations with
an underwater robotic vehicle, the axial fluid velocity
cannot be measured with the required precision, which
compromises its application for control purposes as a
model state variable.

Nevertheless, if the following physically justified
assumptions could be made:

1. Magnitude and direction of axial fluid velocity
are mainly determined by the propeller’s rotational
velocity,

2. Interference of the flow from one thruster to another is
negligible,

3. Ambient fluid velocity and the ROV’s manoeuvring
speed are negligible, when compared with the axial
fluid velocity generated by the propeller’s rotation,

the simplified first order dynamic model proposed by
Yoerger et al. [27], Model 1, can satisfactorily be used
as a part of the compensation strategy in thrust control.
The use of only propeller angular velocity (Ω) as a state
variable is advantageous because it can easily be measured
(or estimated) during real-time operations with a sensor
coupled to the motor’s shaft.

However, considering recent experimental results, marine
thrusters may also exhibit non-smooth nonlinearities such
as dead-zones. A dead-zone is a hard nonlinearity,
frequently encountered in many industrial actuators,
and its presence can drastically reduce control system
performance and lead to limit cycles in a closed-loop
system. The experiments were carried out in a wave
channel with the thruster units of a small remotely
operated underwater vehicle, developed at the Institute
of Mechanics and Ocean Engineering of the Hamburg
University of Technology. The ROV is equipped with
eight thrusters for dynamic positioning and a passive arm
for position and attitude measurement. A picture of the
experimental underwater vehicle is presented in Fig. 2.

Therefore, taking the experimental data into account,
we propose a variation of Model 1 by incorporating
some limitations of the actuator. This modified version,
identified here as Model 2, can be mathematically
represented by equations (5)–(6):

JmspΩ̇ + Kv1Ω + Kv2Ω|Ω| = Kt
Rm

Vm (5)

T = D(Ω|Ω|) (6)

where Vm is the input voltage and D(Ω|Ω|) represents a
dead-zone nonlinearity with a quadratic input Ω|Ω| and
output T, which can be mathematically described by:

D(Ω|Ω|) =




Kl (Ω|Ω| − δl) for Ω|Ω| ≤ δl
0 for δl < Ω|Ω| < δr
Kr (Ω|Ω| − δr) for Ω|Ω| ≥ δr

Figure 2. The experimental remotely operated underwater
vehicle.

The constants Kt and Rm, which represent the motor
torque constant and winding resistance, respectively, can
be obtained from the data-sheet. The values of Kv1, Kv2,
Kl , Kr, δl and δr depend on the constructive characteristics
of each thruster and must be experimentally determined.
For control purposes, these parameters are treated here
as constants for each thruster unit. This simplification
is acceptable, as shown in the next section, due to
the robustness of the proposed controller to parametric
uncertainties.

By incorporating the term Kv1Ω in Eq. (5), Model 2 takes
the back electromotive force and the viscous damping,
due to mechanical sealing, into account. The term
Kv2Ω|Ω| represents the propeller rotational torque due to
hydrodynamic loading. By adopting Eq. (6) to describe the
relationship between the propeller’s angular velocity and
thrust force, the modified model also considers friction
losses during the propeller’s rotation. In the majority of
works, the effect of friction losses is neglected.

The experimental data obtained in a wave channel with
the thruster unit of the ROV can be used to validate
the proposed modifications to Model 1. Figure 3
shows a comparative analysis between Model 1 [27],
Model 2 (modified model) and the experimental thruster’s
response. The required parameters for both models are
obtained using the Levenberg–Marquadt algorithm [17].

As observed in Fig. (3), Model 2 is better suited than
Model 1 to representing the response of the thruster
unit. This improvement is due to the incorporation of
some of the thruster’s electro-mechanical characteristics
and the effect of friction losses during the propeller’s
rotation in the model. Such effects, that probably may be
neglected in optimized thrusters, must be considered with
the application of low-cost units.

3. Dynamic Positioning System

The dynamic positioning of underwater robotic vehicles is
essentially a multivariable control problem. Nevertheless,
as demonstrated by Slotine [21], the variable structure
control methodology allows different controllers to be
separately designed for each degree of freedom (DOF).
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Figure 3. Comparative analysis between Model 1, Model 2 and the experimental data.

Over the past decades, decentralized control strategies
have been successfully applied to the dynamic positioning
of underwater vehicles [6, 8, 15, 20, 23, 28].

Considering that the control law for each degree of
freedom can be easily designed with respect to the
inertial reference frame, Eq. (1) should be rewritten in this
coordinate system.

Remembering that

ẋ = J(x)ν (7)

where J(x) is the Jacobian transformation matrix, it can be
directly implied that

ν = J−1(x)ẋ (8)

and

ν̇ = J̇−1ẋ + J−1ẍ (9)

Therefore, the equations of motion of an underwater
vehicle, with respect to the inertial reference frame,
becomes

M̄ẍ + k̄ + h̄ = τ̄ (10)

where M̄ = J−TM J−1, k̄ = J−Tk + J−TM J̇−1ẋ, h̄ = J−Th
and τ̄ = J−Tτ .

In order to develop the control law with a decentralized
approach, Eq. (10) can be rewritten as follows:

ẍi = m̄−1
i (τ̄i − k̄i − h̄i); i = 1, 2, 3, 4, (11)

where xi, τ̄i, k̄i and h̄i are the components of x = [x, y, z, γ],
τ̄ , k̄ and h̄, respectively. Concerning m̄i, it represents the
main diagonal terms of J−TM J−1.

For notational simplicity the index i will be suppressed in
Eq. (11) and, in this way, the equation of motion for each
degree of freedom (DOF) becomes:

ẍ = m̄−1(τ̄ − k̄ − h̄) (12)

In order to facilitate the analysis of the influence of thruster
dynamics on the overall system behaviour, a 1-DOF
underwater vehicle model with exactly known parameters
is considered here. Otherwise, the actual effect of thruster
dynamics over the vehicle dynamics would be masked by
some variable parameters and cross-coupling effects.

Therefore, based on the assumption of well-known
parameters and to highlight the influence of thruster
dynamics, a feedback linearization approach is adopted
for the dynamic positioning of the underwater robotic
vehicle. The proposed control law can be written as

τ̄ = k̄ + h̄ + m̄(ẍd − 2λ ˙̃x − λ2 x̃) (13)

where xd is the desired trajectory, x̃ = x− xd is the tracking
error and λ is a positive constant.

For this closed-loop system, composed by Eq. (12)–(13), we
have the following error dynamics:

¨̃x + 2λ ˙̃x + λ2 x̃ = 0 (14)

with coefficients that satisfy a Hurwitz polynomial and
ensure exponential convergence to zero.

Now, considering the required thrust to make the vehicle
follow a prescribed trajectory, defined by Eq. 13, we can
calculate the desired force that should be produced by each
thruster by Td = τ/NT , where NT is the available number
of thrusters to actuate within the desired direction.

Finally, considering Eq. (6), a dead-zone inverse is used
to compute the desired propeller angular velocity Ωd.
It should be highlighted that, in order to define the
dead-zone inverse, parameters Kl , Kr, δl and δr must
be exactly known. If these parameters are uncertain or
could not be experimentally obtained, a robust dynamic
positioning system [3, 4] or a dead-zone compensation
scheme [5] should be taken into account.

3.1. Thruster Dynamics Compensation

In order to develop the compensation scheme, Eq. (5) can
be rewritten as follows:

a Ω̇ + b Ω + c Ω|Ω| = u (15)
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where u is the input voltage and a, b and c are variable
but positive and bounded parameters. If these parameters
were perfectly known, then the following compensator
would be enough to deal with the thruster’s dynamic:

u = b Ω + c Ω|Ω|+ a Ω̇d (16)

Considering that only the estimates â, b̂ and ĉ are available,
let the compensation problem be treated in Filippov’s way
[9], defining a law composed by an equivalent control û =
b̂ Ω + ĉ Ω|Ω|+ â Ω̇d and a discontinuous term −K sgn(s):

u = b̂ Ω + ĉ Ω|Ω|+ â Ω̇d −K sgn(s) (17)

where s = Ω̃ = Ω − Ωd, Ωd is the desired propeller
angular velocity, K is the compensator gain (which in
this work is variable and determined by a fuzzy inference
system), and sgn(·) is defined by

sgn(s) =




−1 if s < 0
0 if s = 0
1 if s > 0

Regarding the development of the control law, the
following assumption must be made:

Assumption 1. The desired propeller angular acceleration
(Ω̇d) is continuous, available and with known bounds.

In this work, the desired propeller angular acceleration
(Ω̇d) is estimated using the backward difference method.

The compensator established in Eq. (17) is based on the
classical sliding-mode control that originally appeared in
Soviet literature [24]. It is able to deal with the parametric
uncertainties but, as a drawback, leads to high control
activity and chattering. To overcome these limitations,
the relay function sgn(·) in Eq. (17) can be replaced by a
saturation function [22], defined as:

sat(s/φ) =

{
sgn(s) if |s/φ| ≥ 1

s/φ if |s/φ| < 1

The substitution of sgn(·) by sat(·) leads to the appearance
of a boundary layer (Φ) with width φ, which turn perfect
tracking into a tracking with guaranteed precision problem.

In order to demonstrate that the proposed compensation
scheme can deal with unstructured uncertainties, the term
bΩ is treated as unmodelled dynamics and not taken into
account within the design of the control law:

u = ĉ Ω|Ω|+ â Ω̇d −K sat
(

s
φ

)
(18)

Figure 4 shows the block diagram of the resulting dynamic
positioning system.

On this basis, a variable gain, defined by a fuzzy inference
system, is chosen in order to make a better trade-off
between reaching time and tracking precision. The
adopted fuzzy inference system is the zero order TSK
(Takagi–Sugeno–Kang), whose rules can be stated in a
linguistic manner as follows:

If |s| is Sn then kn = Kn ; n = 1, 2, . . . , N

where Sn are fuzzy sets, and Kn is the output value of each
one of the N fuzzy rules, with Kn > Kn−1. Triangular
(in the middle) and trapezoidal (at the edges) membership
functions could, for instance, be adopted for the fuzzy sets.

Considering that each rule defines a numerical value as
output Kn, the final output K can be computed by a
weighted average:

K =
∑N

n=1 wn · kn

∑N
n=1 wn

(19)

where wn is the firing strength of each rule.

According to Lemma 1, Eq. (19) implies that K is bounded.

Lemma 1. Let the fuzzy gain K be defined by Eq. (19), then K
is bounded, Kmin ≤ K ≤ Kmax.

Proof. Equation (19) may also be written as K = KTΨ(s),
where K = [K1, K2, . . . , KN ] is the vector containing
attributed values to each rule, with Kn > Kn−1, and Ψ(s) =
[ψ1(s), ψ2(s), . . . , ψN(s)] is a vector with components
ψn(s) = wn/ ∑N

n=1 wn. So, for the adopted membership
functions (triangular in the middle and trapezoidal at
the edges), with the central values chosen as: C =
{C1 ; C2 ; . . . ; CN}, we have for s ≤ C1, Ψ(s) =
[1, 0, . . . , 0, 0], which implies K = K1. In the same way,
for s ≥ CN we have Ψ(s) = [0, 0, . . . , 0, 1], which implies
K = KN , and completes the proof: K1 ≤ K ≤ KN .

The boundedness and convergence properties of the
proposed compensation scheme relies on the following
theorem.

Theorem 1. For the thruster system represented by Eq. (15),
the fuzzy sliding-mode compensator defined by Eq. (18) and
Eq. (19), with K1 = F + âαη + â(α − 1)|Ω̇d|, ensures
the boundedness of all closed-loop signals and the finite time
convergence to Φ = { Ω | |Ω̃| ≤ φ}.

Proof. To establish boundedness of the closed-loop signals,
let us first define a Lyapunov function candidate V, where

V(t) =
1
2

s2
φ (20)

and sφ is a measure of the distance of the current state to
the boundary layer (Φ), that can be defined as

sφ = s − φ sat(s/φ) (21)

Noting that sφ = 0 inside the boundary layer and ˙sφ = ṡ,
we have V̇(t) = 0 inside Φ, and outside:

V̇(t) = sφ ṡφ = sφ ṡ = (Ω̇ − Ω̇d)sφ = [a−1( f + u)− Ω̇d]sφ

where u = − f̂ + â Ω̇d − K sgn(s) outside the boundary
layer, f = −b Ω − c Ω|Ω| and f̂ = −ĉ Ω|Ω|. So, the time
derivative of s takes the following form:

Wallace M. Bessa, Max S. Dutra and Edwin Kreuzer: Dynamic Positioning  
of Underwater Robotic Vehicles with Thruster Dynamics Compensation

5www.intechopen.com



+_Linearization
Feedbackxd +_

Ωd

Dead−zone
Inverse

Td yROVFSMC

Ω

u

x

Figure 4. Block diagram of the ROV controller with fuzzy sliding-mode compensation for thruster dynamics.

ṡ = a−1[ f − f̂ + â Ω̇ −K sgn(s)]− Ω̇d (22)

If the parameters a, b and c are unknown but assumed to be
positive and bounded, which is physically coherent, and
their estimates â and ĉ are both positive constants, so that
| f̂ − f | ≤ F and α−1 ≤ â/a ≤ α, where α =

√
amax/amin ,

then we have:

V̇(t) = [a−1( f + u)− Ω̇d]sφ (23)

= {a−1[ f − f̂ + â Ω̇d −K sgn(s)]− Ω̇d}sφ (24)

= −[a−1( f̂ − f ) + Ω̇d − a−1 â Ω̇d + a−1K sgn(s)]sφ

(25)

>From Lemma 1, defining Kmin = F + âαη + â(α − 1)|Ω̇d|,
with η being a positive constant related to the convergence
time, implies that K ≥ Kmin and that

V̇(t) ≤ −η|sφ| (26)

implying that V(t) ≤ V(0), and, therefore, that sφ is
bounded. From the definition of sφ, Eq. (21), we can
conclude that s is also bounded. Considering Eq. (22),
Lemma 1 and Assumption 1, it can be easily verified that ṡ
is also bounded.

Integrating both sides of (26) between 0 and treach, where
sφ(treach) = 0, shows that Φ = { Ω | |Ω̃| ≤ φ} will be
reached in a finite time smaller than

treach ≤
|sφ(t = 0)|

η
(27)

This ensures the finite time convergence to the boundary
layer and the boundedness of the closed-loop signals,
completing the proof.

Theorem 1 also implies that the boundary layer is an
invariant set, i.e., every system trajectory which starts from
a point in Φ remains in Φ for ∀t ≥ 0. Inside the boundary
layer Φ, the error dynamics takes the following form:

aṡ +
K
φ

s = pTy (28)

where p = [(â − a) , −b , (ĉ − c)] is the vector with
parametric uncertainty, and y = [Ω̇d , Ω , Ω|Ω|].

4. Simulation Results

The simulation studies were performed with a numerical
implementation in C, with sampling rates of 500 Hz for
ROV states and 1 kHz for propeller rotational velocity. The
chosen parameters for the thruster model are: kr = kl =
2.25× 104, δr = −δl = 5.75× 10−5, a(t) = 1.0× 10−2 · ε(t),
b(t) = 4.0 × 10−2 · ε(t) and c(t) = 1.4 × 10−5 · ε(t), with
ε(t) = 1 + 0.25 sen (|Ω|t). The ROV model is defined with
m̄ = 50 kg, k̄ = 0, h̄ = 0.5ρCD Aẋ|ẋ|, A = 0.25 m2, ρ =
1000 kg/m3 and CD = 1.2.

The performance of the proposed compensator, Eq. (18),
is evaluated first in comparison with a conventional
sliding-mode compensator. The chosen parameters for
the FSMC are â = 1.0 × 10−2, ĉ = 1.1 × 10−4 and φ =
7.0. For the fuzzy gain (K), triangular (in the middle)
and trapezoidal (at the edges) membership functions are
adopted for Sn, with the central values defined as C =
{7.0 ; 15.0 ; 25.0 ; 50.0 ; 100.0 ; 200.0 ; 400.0} and associated
crisp outputs Kn = {1.0 ; 1.5 ; 2.0 ; 3.0 ; 4.0 ; 6.0 ; 10.0} ×
Kmin, where Kmin = F + âαη + â(α − 1)|Ω̇d|, F = 6.8,
α = 1.29 and η = 0.15. For the conventional sliding-mode
controller we set K as constant, K = Kmin. Figure 5 shows
some comparative results between FSMC and SMC.

Figure 5 shows that the fuzzy sliding-mode compensator
(FSMC) is capable of providing the stabilization of the
desired propeller angular velocity even in the presence of
both structured and unstructured uncertainties. It could
also be observed that the FSMC shows a better and almost
constant rising time for different values of Ωd, without
increasing control activity and chattering.

Now, in order to demonstrate the improved performance
of the dynamic positioning system with the FSMC over
the commonly adopted feed-forward approach, we show a
comparison of both strategies for two different trajectories:
xd = 0.05[1 − cos(0.25πt)] (Fig. 6) and xd = 0.25[1 −
cos(0.5πt)] (Fig. 7). In both cases, the input voltage in
the feed-forward approach was directly estimated, based
on thruster Model 2, with u = b̂ Ωd + ĉ Ωd|Ωd|, with
b̂ = 4.0 × 10−2 and ĉ = 1.4 × 10−5.

Note that despite the better suited parameters of
the feed-forward approach (M2BC), the proposed
compensation scheme (FSMC) shows an improved
performance. This is due to the ability of the FSMC to
track the necessary angular velocity for the propeller,
Fig. 6(c) and Fig. 7(c). Comparing Fig. 6(b) with Fig. 7(b),
it could also be verified that the degradation in the
controller performance, caused by the influence of
thruster dynamics, is specially critical during low-speed
manoeuvres with the vehicle. This result confirms that,
in such cases, the dynamic behaviour of an underwater
robotic vehicle can be dominated by thruster dynamics.
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Figure 5. Propeller’s angular velocity (top) and the related input voltage (bottom) for both the fuzzy sliding-mode compensator (FSMC)
and the conventional sliding-mode compensator (SMC).
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Figure 6. Comparative analysis of the ROV positioning system with the proposed FSMC and with a feed-forward approach based on
Model 2 (M2BC) for the tracking of xd = 0.05[1 − cos(0.25πt)] m.
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Figure 7. Comparative analysis of the ROV positioning system with the proposed FSMC and with a feed-forward approach based on
Model 2 (M2BC) for the tracking of xd = 0.25[1 − cos(0.5πt)] m.

5. Concluding Remarks

The present work addresses the compensation of
thruster dynamics in the dynamic positioning system of
underwater robotic vehicles. A sliding-mode compensator
with fuzzy gain is proposed to enhance the tracking
performance. The boundedness of the closed-loop
signals’ compensation subsystem, as well as the finite

time convergence of the error to the boundary layer,
is proven using Lyapunov’s stability theory. By means
of numerical simulations, the improved performance
and the robustness to both structured and unstructured
uncertainties, namely parametric uncertainties and
unmodelled dynamics, are confirmed.
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Accordingly, this step can only be carried out if the
matching procedure was already performed for the first
error image. Therefore, only areas that were not removed
during the first matching procedure are extended by
corresponding areas of the subsequent error images.
Otherwise, the noise (falsely detected areas) would cause
an enlargement of incorrectly detected areas. The red short
dashed rectangles in Figure 8 mark 2 examples of such
corresponding areas. Resulting areas that are too large
are removed from the error images In and In+1. This is
indicated by the areas in the right lower corner of error
image In in Figure 8. As can be seen, the resulting error
image In from Figure 8 is used as input (error image In) in
Figure 7. Without the extension of the areas, the midmost
candidate in Figure 7 would have been rejected.

As some real moving objects are sometimes not detected
in an error image as a result of an inaccurate optical flow
calculation or (radial) distortion, the temporal matching
would fail. This could already be the case if only one
area in one error image is missing. Thus, candidates that
were detected once in 3 temporal succeeding error images
and 4 greyscale images (original images), respectively, are
stored for a sequence of 3 error images subsequent to the
image where the matching was successful, cf. Figure 9(a).
Their coordinates are updated for the succeeding error
images by using the optical flow data. As a consequence,
they can be seen as candidates for moving objects in
the succeeding images, but they are not used within the
matching procedure as input. If within this sequence
of images a corresponding area is found again, it is

stored for a larger sequence of images (more than 3) and
its coordinates are updated for every succeeding error
image. The number of sequences depends on the following
condition:

ξ =

{
c+c̄
c−c̄ | c �= c̄
2c̄ | c = c̄,

(13)

where c is the number of found corresponding areas and
c̄ is the number of missing corresponding areas for one
candidate starting with the image where the candidate
was found again. If ξ < 0 ∨ ξ > 10, the candidate is
rejected. Moreover, the candidate is no longer stored if it
was detected again in 3 temporal succeeding images. In
this case, it is detected during the matching procedure.
An example concerning to this procedure is shown in
Figure 9(b). As one can imagine, error image In in
Figure 9(a) is equivalent (except area-extension) to In+1
in Figure 7, whereas error image In in Figure 9(b) is
equivalent to In+2 in Figure 9(a).

For a further processing of the data, only the position
(shown as small black crosses in the left lower corners of
the rectangles in Figures 7 and 9) and size of the rectangles
marking the candidates are of relevance. Thus, for every
error image the afore mentioned information is stored
for candidates that were detected during the matching
procedure, for candidates that were detected up to 3 error
images before and for candidates that were found again
(see above). On the basis of this data, candidates that are
very close to each other are combined and candidates that
are too large are rejected.
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(b)

Figure 9. Preventing rejection of candidates for moving objects that were detected only in a few sequences. (a) Storage of candidates
for which a further matching fails. These candidates are marked by a blue dotdashed rectangle. The green dashed rectangle marks a
candidate for which a corresponding area was found again and the red short-dashed rectangle marks a candidate with successful matching.
(b) Storage of candidates for which a corresponding area was found again. The 2 areas drawn with transparency in error image In indicate
the position of the candidates, but they are not part of the error image.
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