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Abstract Electro-hydraulic servo-systems are widely employed in industrial applica-
tions such as robotic manipulators, active suspensions, precision machine tools and
aerospace systems. They provide many advantages over electric motors, including
high force to weight ratio, fast response time and compact size. However, precise
control of electro-hydraulic systems, due to their inherent nonlinear characteristics,
cannot be easily obtained with conventional linear controllers. Most flow control
valves can also exhibit some hard nonlinearities such as dead-zone due to valve
spool overlap. This work describes the development of an adaptive fuzzy sliding
mode controller for an electro-hydraulic system with unknown dead-zone. The
boundedness and convergence properties of the closed-loop signals are proven using
Lyapunov stability theory and Barbalat’s lemma. Numerical results are presented in
order to demonstrate the control system performance.

Keywords Adaptive algorithms · Dead-zone · Electro-hydraulic systems ·
Fuzzy logic · Nonlinear control · Sliding modes

Mathematics Subject Classifications (2000) 34H05 · 70Q05 · 93B12 · 93C10 ·
93C15 · 93C95 · 93D05

W. M. Bessa (B)
UFRN, Federal University of Rio Grande do Norte, Natal, Brazil
e-mail: wmbessa@ufrnet.br

M. S. Dutra
COPPE/UFRJ, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
e-mail: max@mecanica.ufrj.br

E. Kreuzer
TUHH, Hamburg University of Technology, Hamburg, Germany
e-mail: kreuzer@tuhh.de



4 J Intell Robot Syst (2010) 58:3–16

1 Introduction

Electro-hydraulic actuators play an essential role in several branches of industrial
activity and are frequently the most suitable choice for systems that require large
forces at high speeds. Their application scope ranges from robotic manipulators to
aerospace systems. Another great advantage of hydraulic systems is the ability to
keep up the load capacity, which in the case of electric actuators is limited due
to excessive heat generation.

However, the dynamic behavior of electro-hydraulic systems is highly nonlinear,
which in fact makes the design of controllers for such systems a challenge for
the conventional and well established linear control methodologies. The increasing
number of works dealing with control approaches based on modern techniques
shows the great interest of the engineering community, both in academia and
industry, in this particular field. The most common approaches are the adaptive
[1–4] and variable structure [5–7] methodologies, but nonlinear controllers based on
quantitative feedback theory [8], optimal tuning PID [9], adaptive neural network
[10] and adaptive fuzzy system [11] were also presented.

In addition to the common nonlinearities that originate from the compressibility
of the hydraulic fluid and valve flow-pressure properties, most electro-hydraulic
systems are also subjected to hard nonlinearities such as dead-zone due to valve spool
overlap. It is well-known that the presence of a dead-zone can lead to performance
degradation of the controller and limit cycles or even instability in the closed-loop
system. To overcome the negative effects of the dead-zone nonlinearity, many works
[12–17] use an inverse function even though this approach leads to a discontinuous
control law and requires instantaneous switching, which in practice can not be
accomplished with mechanical actuators. An alternative scheme, without using the
dead-zone inverse, was originally proposed by Lewis et al. [18] and also adopted by
Wang et al. [19]. In both works, the dead-zone is treated as a combination of a linear
and a saturation function. This approach was further extended by Ibrir et al. [20]
and by Zhang and Ge [21], in order to accommodate non-symmetric and unknown
dead-zones, respectively.

In this work, an adaptive fuzzy sliding mode controller is developed for an electro-
hydraulic system subject to an unknown dead-zone input. The adopted approach
is based on a control scheme recently proposed by Bessa et al. [22] for nth-order
uncertain nonlinear systems, that does not require previous knowledge of dead-
zone parameters nor the construction of an inverse function. On this basis, a
smooth sliding mode controller is considered to confer robustness against modeling
imprecisions and a fuzzy inference system is embedded in the boundary layer to cope
with dead-zone effects. The boundedness and convergence properties of the closed-
loop system are analytically proven using Lyapunov stability theory and Barbalat’s
lemma. Numerical simulations are carried out in order to demonstrate the control
system performance.

2 Electro-hydraulic System Model

In order to design the adaptive fuzzy controller, a mathematical model that repre-
sents the hydraulic system dynamics is needed. Dynamic models for such systems are
well documented in the literature [23, 24].



J Intell Robot Syst (2010) 58:3–16 5

The electro-hydraulic system considered in this work consists of a four-way
proportional valve, a hydraulic cylinder and variable load force. The variable load
force is represented by a mass–spring–damper system. The schematic diagram of the
system under study is presented in Fig. 1.

The balance of forces on the piston leads to the following equation of motion:

Fg = A1 P1 − A2 P2 = Mt ẍ + Bt ẋ + Ksx (1)

where Fg is the force generated by the piston, P1 and P2 are the pressures at each
side of cylinder chamber, A1 and A2 are the ram areas of the two chambers, Mt is the
total mass of piston and load referred to piston, Bt is the viscous damping coefficient
of piston and load, Ks is the load spring constant and x is the piston displacement.

Defining the pressure drop across the load as Pl = P1 − P2 and considering that
for a symmetrical cylinder Ap = A1 = A2, Eq. 1 can be rewritten as

Mt ẍ + Bt ẋ + Ksx = Ap Pl (2)

Applying continuity equation to the fluid flow, the following equation is obtained:

Ql = Ap ẋ + Ctp + Vt

4βe
Ṗl (3)

where Ql = (Q1 + Q2)/2 is the load flow, Ctp the total leakage coefficient of piston,
Vt the total volume under compression in both chambers and βe the effective bulk
modulus.

Considering that the return line pressure is usually much smaller than the other
pressures involved (P0 ≈ 0) and assuming a closed center spool valve with matched
and symmetrical orifices, the relationship between load pressure Pl and load flow Ql

can be described as follows

Ql = Cdwx̄sp

√
1

ρ

(
Ps − sgn(x̄sp)Pl

)
(4)
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Fig. 1 Schematic diagram of the electro-hydraulic servo-system
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where Cd is the discharge coefficient, w the valve orifice area gradient, x̄sp the
effective spool displacement from neutral, ρ the hydraulic fluid density, Ps the supply
pressure and sgn(·) is defined by

sgn(z) =
⎧⎨
⎩

−1 if z < 0
0 if z = 0
1 if z > 0

Assuming that the dynamics of the valve are fast enough to be neglected, the valve
spool displacement can be considered as proportional to the control voltage (u). For
closed center valves, or even in the case of the so-called critical valves, the spool
presents some overlap. This overlap prevents from leakage losses but leads to a dead-
zone nonlinearity within the control voltage, as shown in Fig. 2.

The adopted dead-zone model is a slightly modified version of that proposed by
Zhang and Ge [21], which can be mathematically described by

x̄sp =
⎧⎨
⎩

gl(u) if u ≤ δl

0 if δl < u < δr

gr(u) if u ≥ δr

(5)

where gl and gr are functions of control voltage and the dead-band parameters δl and
δr depends on the size of the overlap region.

In respect of the dead-zone model presented in Eq. 5, the following assumptions
can be made:

Assumption 1 The dead-zone output x̄sp is not available to be measured.

Fig. 2 Dead-zone nonlinearity
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Assumption 2 The dead-band parameters δl and δr are unknown but bounded and
with known signs, i.e., δl min ≤ δl ≤ δl max < 0 and 0 < δr min ≤ δr ≤ δr max.

Assumption 3 The functions gl : (−∞, δl] and gr : [δr, +∞) are C1 and with bounded
positive-valued derivatives, i.e.,

0 < kl min ≤ g′
l(u) ≤ kl max, ∀u ∈ (−∞, δl],

0 < kr min ≤ g′
r(u) ≤ kr max, ∀u ∈ [δr,+∞),

where g′
l(u) = dgl(z)/dz|z=u and g′

r(u) = dgr(z)/dz|z=u.

Remark 1 Assumption 3 means that both gl and gr are Lipschitz functions.

From the mean value theorem and noting that gl(δl) = gr(δr) = 0, it follows that
there exist ξl : R → (−∞, δl) and ξr : R → (δr,+∞) such that

gl(u) = g′
l

(
ξl(u)

)[u − δl]
gr(u) = g′

r

(
ξr(u)

)[u − δr]
In this way, Eq. 5 can be rewritten as follows:

x̄sp =
⎧⎨
⎩

g′
l

(
ξl(u)

)[u − δl] if u ≤ δl

0 if δl < u < δr

g′
r

(
ξr(u)

)[u − δr] if u ≥ δr

(6)

or in a more appropriate form:

x̄sp = kv(u)[u − d(u)] (7)

where

kv(u) =
{

g′
l

(
ξl(u)

)
if u ≤ 0

g′
r

(
ξr(u)

)
if u > 0

(8)

and

d(u) =
⎧⎨
⎩

δl if u ≤ δl

u if δl < u < δr

δr if u ≥ δr

(9)

Remark 2 Considering Assumption 2 and Eq. 9, it can be easily verified that d(u) is
bounded: |d(u)| ≤ δ, where δ = max{−δl min, δr max}.

Combining Eqs. 2, 3, 4 and 7 leads to a third-order differential equation that
represents the dynamic behavior of the electro-hydraulic system:

...
x = −aTx + b(x, u)u − b(x, u)d(u) (10)

where x = [x, ẋ, ẍ] is the state vector with an associated coefficient vector a =
[a0, a1, a2] defined according to

a0 = 4βeCtp Ks

Vt Mt
; a1 = Ks

Mt
+ 4βe A2

p

Vt Mt
+ 4βeCtp Bt

Vt Mt
; a2 = Bt

Mt
+ 4βeCtp

Vt
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and

b(x, u) = 4βe Ap

Vt Mt
Cdwkv

√
1

ρ

[
Ps − sgn(u)

(
Mt ẍ + Bt ẋ + Ksx

)
/Ap

]

In respect of the dynamic system presented in Eq. 10, the following assumptions
will also be made:

Assumption 4 The coefficients a0, a1 and a2 are unknown but bounded: |(â − a)Tx| ≤
α, where â is an estimate of a.

Assumption 5 The input gain b(x, u) is unknown but positive and bounded: 0 <

b min ≤ b(x, u) ≤ b max.

Based on the dynamic model presented in Eq. 10, an adaptive fuzzy sliding mode
controller will be developed in the next section.

3 Adaptive Fuzzy Sliding Mode Controller

As shown by Bessa et al. [25], adaptive fuzzy algorithms can be properly embedded
in smooth sliding mode controllers to improve the trajectory tracking of uncertain
nonlinear systems. Adaptive fuzzy sliding mode controllers based on this strategy has
already been successfully applied to the dynamic positioning of remotely operated
underwater vehicles [26] and to the chaos control in a nonlinear pendulum [27].

Here, the proposed control problem is to ensure that, even in the presence of
parametric uncertainties, unmodeled dynamics and an unknown dead-zone input,
the state vector x will follow a desired trajectory xd = [xd, ẋd, ẍd] in the state space.

Regarding the development of the control law, the following assumptions should
also be made:

Assumption 6 The state vector x is available.

Assumption 7 The desired trajectory xd is once differentiable in time. Furthermore,
every element of vector xd, as well as

...
x d, is available and with known bounds.

Let x̃ = x − xd be defined as the tracking error in the variable x, x̃ = x − xd =
[x̃, ˙̃x, ¨̃x] as the tracking error vector and consider a sliding surface S defined in the
state space by the equation s(x̃) = 0, with the function s : R

3 → R satisfying

s(x̃) = ¨̃x + 2λ ˙̃x + λ2 x̃ (11)

where λ is a strictly positive constant.
Now, the problem of controlling the system dynamics (Eq. 10) can be treated

according to the sliding mode methodology, by defining a control law composed
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by an equivalent control û = b̂−1
(
âTx + ...

x d − 2λ ¨̃x − λ2 ˙̃x)
, an estimate d̂(û) and a

discontinuous term −K sgn(s):

u = b̂−1
(
âTx + ...

x d − 2λ ¨̃x − λ2 ˙̃x) + d̂(û) − K sgn(s) (12)

where K is the control gain.
Based on Assumption 5 and considering that the estimate b̂ could be chosen

according to the geometric mean b̂ = √
b maxb min, the bounds of b may be expressed

as γ −1 ≤ b̂/b ≤ γ , where γ = √
b max/b min.

Under this condition, the gain K should be chosen according to:

K ≥ γ b̂−1(η + α) + δ + |d̂(û)| + (γ − 1)|û| (13)

where η is a strictly positive constant related to the reaching time.
At this point, it should be highlighted that the control law (Eq. 12), together with

Eq. 13, is sufficient to impose the sliding condition

1

2

d
dt

s2 ≤ −η|s|

and, consequently, the finite time convergence to the sliding surface S.
In order to obtain a good approximation to d(u), the estimate d̂(û) will be

computed directly by an adaptive fuzzy algorithm. The adopted fuzzy inference
system was the zero order TSK (Takagi–Sugeno–Kang), whose rules can be stated
in a linguistic manner as follows:

If û is Ûr then d̂r = D̂r , r = 1, 2, . . . , N

where Ûr are fuzzy sets, whose membership functions could be properly chosen, and
D̂r is the output value of each one of the N fuzzy rules.

Considering that each rule defines a numerical value as output D̂r, the final output
d̂ can be computed by a weighted average:

d̂(û) =
∑N

r=1 wr · d̂r∑N
r=1 wr

or, similarly,

d̂(û) = D̂T�(û) (14)

where, D̂ = [D̂1, D̂2, . . . , D̂N]T is the vector containing the attributed values D̂r to
each rule r, �(û) = [ψ1(û), ψ2(û), . . . , ψN(û)] is a vector with components ψr(û) =
wr/

∑N
r=1 wr and wr is the firing strength of each rule.

To ensure the best possible estimate d̂(û), the vector of adjustable parameters can
be automatically updated by the following adaptation law:

˙̂D = −ϕs�(û) (15)

where ϕ is a strictly positive constant related to the adaptation rate.
It is important to emphasize that the chosen adaptation law, Eq. 15, must not only

provide a good approximation to d(u) but also assure the convergence of the state
variables to the sliding surface S(t), for the purpose of trajectory tracking. In this
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way, in order to evaluate the stability of the closed-loop system, let a positive-definite
function V1 be defined as

V1(t) = 1

2
s2 + b

2ϕ
�T�

where � = D̂ − D̂∗ and D̂∗ is the optimal parameter vector, associated to the optimal
estimate d̂∗(û) = d(u).

Thus, the time derivative of V1 is

V̇1(t) = sṡ + bϕ−1�T�̇ = (...
x̃ + 2λ ¨̃x + λ2 ˙̃x)

s + bϕ−1�T�̇

= ( − aTx + bu − bd − ...
x d + 2λ ¨̃x + λ2 ˙̃x)

s + bϕ−1�T�̇

= [ − aTx + bb̂−1
(
âTx + ...

x d − 2λ ¨̃x − λ2 ˙̃x) + bd̂ − bK sgn(s)

− bd − ...
x d + 2λ ¨̃x + λ2 ˙̃x]

s + bϕ−1�T�̇

Defining a minimum approximation error as ε = d̂∗ − d, recalling that û =
b̂−1(âTx + ...

x d − 2λ ¨̃x − λ2 ˙̃x) and noting that �̇ = ˙̂D and aTx = âTx − (â − a)Tx, V̇1

becomes:

V̇1(t) = −[
bK sgn(s) − (â − a)Tx + b̂û − bû − bε − b(d̂ − d̂∗)

]
s + bϕ−1�T ˙̂D

= −[
bK sgn(s) − (â − a)Tx + b̂û − bû − bε − b�T�(û)

]
s + bϕ−1�T ˙̂D

= −[
bK sgn(s) − (â − a)Tx + b̂û − bû − bε

]
s + bϕ−1�T[ ˙̂D + ϕs�(û)

]
Thus, by applying the adaptation law (Eq. 15) to ˙̂D:

V̇1(t) = −[bK sgn(s) − (â − a)Tx + b̂û − bû − bε]s
Furthermore, considering Assumptions 2–5, defining K according to Eq. 13 and

verifying that |ε| = |d̂∗ − d| ≤ |d̂ − d| ≤ |d̂| + δ, it follows that

V̇1(t) ≤ −η|s| (16)

which implies V1(t) ≤ V1(0) and that s and � are bounded. The definition of s, Eq. 11,
implies that x̃ is bounded. On this basis, from the definition of ṡ, ṡ(x̃) = ...

x̃ + 2λ ¨̃x +
λ2 ˙̃x, and Assumption 7 it can be verified that ṡ is also bounded.

Integrating both sides of Eq. 16 shows that

lim
t→∞

∫ t

0
η|s| dτ ≤ lim

t→∞ [V1(0) − V1(t)] ≤ V1(0) < ∞

Since the absolute value function is uniformly continuous, it follows from
Barbalat’s lemma [28] that s → 0 as t → ∞, which ensures the convergence of the
tracking error vector to the sliding surface S.

In spite of the demonstrated properties of the controller, the presence of a discon-
tinuous term in the control law leads to the well known chattering phenomenon. In
order to overcome the undesirable chattering effects, a thin boundary layer, Sφ , in
the neighborhood of the switching surface can be adopted [29]:

Sφ = {
x̃ ∈ R

3
∣∣ |s(x̃)| ≤ φ

}
where φ is a strictly positive constant that represents the boundary layer thickness.
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The boundary layer is achieved by replacing the sign function by a continuous
interpolation inside Sφ . It should be noted that this smooth approximation must
behave exactly like the sign function outside the boundary layer. There are several
options to smooth out the ideal relay but the most common choice is the saturation
function:

sat(s/φ) =
{

sgn(s) if |s/φ| ≥ 1
s/φ if |s/φ| < 1

In this way, to avoid chattering, a smooth version of Eq. 12 is defined:

u = b̂−1
(
âTx + ...

x d − 2λ ¨̃x − λ2 ˙̃x) + d̂(û) − K sat(s/φ) (17)

In order to establish the attractiveness and invariant properties of the defined
boundary layer, let a new Lyapunov function candidate V2 be defined as

V2(t) = 1

2
s2
φ

where sφ is a measure of the distance of the current state to the boundary layer, and
can be computed as follows

sφ = s − φ sat(s/φ) (18)

Noting that sφ = 0 inside the boundary layer and ṡφ = ṡ, one has V̇2(t) = 0 inside
Sφ , and outside

V̇2(t) = sφ ṡφ = sφ ṡ = (...
x̃ + 2λ ¨̃x + λ2 ˙̃x)

sφ = ( − aTx + bu − bd − ...
x d + 2λ ¨̃x + λ2 ˙̃x)

sφ

It can be easily verified that outside the boundary layer the control law (Eq. 17)
takes the following form:

u = b̂−1(âTx + ...
x d − 2λ ¨̃x − λ2 ˙̃x) + d̂(û) − K sgn(sφ)

Thus, the time derivative V̇2 can be written as

V̇2(t) = −[
bK sgn(sφ) − (â − a)Tx + b̂û − bû − bd̂ + bd

]
sφ

Therefore, by considering Assumptions 2–5 and defining K according to Eq. 13,
V̇2(t) becomes:

V̇2(t) ≤ −η|sφ | (19)

which implies V2(t) ≤ V2(0) and that sφ is bounded. The definitions of s and sφ ,
respectively Eqs. 11 and 18, implies that x̃ is bounded. From the definition of ṡ and
Assumption 7 it can be verified that ṡ is also bounded.

The finite-time convergence of the states to the boundary layer can be shown by
integrating both sides of Eq. 19 over the interval 0 ≤ t ≤ treach, where treach is the time
required to hit Sφ . In this way, noting that |sφ(treach)| = 0, one has:

treach ≤ |sφ(0)|
η

(20)

which guarantees the convergence of the tracking error vector to the boundary layer
in a time interval smaller than |sφ(0)|/η.

Nevertheless, it should be emphasized that the substitution of the discontinuous
term by a smooth approximation inside the boundary layer turns the perfect tracking
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into a tracking with guaranteed precision problem, which actually means that a
steady-state error will always remain. However, it can be verified that, once inside
the boundary layer, the tracking error vector will exponentially converge to a closed
region �.

Considering that |s(x̃)| ≤ φ may be rewritten as −φ ≤ s(x̃) ≤ φ and from the
definition of s(x̃), Eq. 11, one has:

−φ ≤ ¨̃x + 2λ ˙̃x + λ2 x̃ ≤ φ (21)

Multiplying Eq. 21 by eλt and integrating between 0 and t:

−φeλt ≤ ( ¨̃x + 2λ ˙̃x + λ2 x̃
)
eλt ≤ φeλt

−φeλt ≤ d 2

dt 2
(x̃eλt) ≤ φeλt

−φ

∫ t

0
eλτ dτ ≤

∫ t

0

d 2

dτ 2
(x̃eλτ )dτ ≤ φ

∫ t

0
eλτ dτ

−φ

λ
eλt + φ

λ
≤ d

dt
(x̃eλt) − d

dt
(x̃eλt)

∣∣∣∣
t=0

≤ φ

λ
eλt − φ

λ

or conveniently rewritten as

−φ

λ
eλt −

(∣∣∣∣ d
dt

(x̃eλt)

∣∣∣∣
t=0

+ φ

λ

)
≤ d

dt
(x̃eλt) ≤ φ

λ
eλt +

(∣∣∣∣ d
dt

(x̃eλt)

∣∣∣∣
t=0

+ φ

λ

)
(22)

Now, integrating Eq. 22 between 0 and t:

− φ

λ2
eλt −

(∣∣∣∣ d
dt

(x̃eλt)

∣∣∣∣
t=0

+ φ

λ

)
t

−
(

|x̃(0)| + φ

λ2

)
≤ x̃eλt ≤ φ

λ2
eλt

+
(∣∣∣∣ d

dt
(x̃eλt)

∣∣∣∣
t=0

+ φ

λ

)
t +

(
|x̃(0)| + φ

λ2

)
(23)

Furthermore, dividing Eq. 23 by eλt, it can be easily verified that for t → ∞:

− φ

λ2
≤ x̃ ≤ φ

λ2
(24)

By imposing the bounds (24) to (22), noting that d(x̃eλt)/dt = ˙̃xeλt + x̃λeλt and
dividing again by eλt, it follows that, for t → ∞,

−2
φ

λ
≤ ˙̃x ≤ 2

φ

λ
(25)

Finally, applying Eqs. 24 and 25 to Eq. 21, one has

−6φ ≤ ¨̃x ≤ 6φ (26)

In this way, the tracking error will be confined within the limits |x̃| ≤ φ/λ2,
| ˙̃x| ≤ 2φ/λ and | ¨̃x| ≤ 6φ. However, these bounds define a box that is not completely
inside the boundary layer. Considering the demonstrated attractiveness and invariant
properties of Sφ , the region of convergence can be stated as the intersection of the
boundary layer and the box defined by the preceding bounds. Therefore, it follows
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Fig. 3 Adopted fuzzy
membership functions
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that the tracking error vector will exponentially converge to a closed region � = {x̃ ∈
R

3 | |s(x̃)| ≤ φ and |x̃| ≤ φ/λ2 and | ˙̃x| ≤ 2φ/λ and | ¨̃x| ≤ 6φ }. It should be highlighted
that the convergence region � is in perfect accordance with the bounds proposed by
Bessa [30] for nth-order nonlinear systems subject to smooth sliding mode controllers.

In the following section some numerical simulations are presented in order to
evaluate the performance of the adaptive fuzzy sliding mode controller.

4 Simulation Results

The simulation studies were performed with a numerical implementation in C, with
sampling rates of 400 Hz for control system and 800 Hz for dynamic model. The
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differential equations of the dynamic model were numerically solved with the fourth
order Runge–Kutta method. In order to evaluate the control system performance,
two numerical simulations were carried out.

In the first case, linear functions were taken into account for both gl(u) =
kl(u − δl) and gr(u) = kr(u − δr). In this way, the adopted parameters for the electro-
hydraulic system were Ps = 7 MPa, ρ = 850 kg/m3, Cd = 0.6, w = 2.5 × 10−2 m,
Ap = 3 × 10−4 m2, Ctp = 2 × 10−12 m3/(s Pa), βe = 700 MPa, Vt = 6 × 10−5 m3, Mt =
250 kg, Bt = 100 Ns/m, Ks = 75 N/m, kl = 1.8 × 10−6 m/V, kr = 2.2 × 10−6 m/V,
δl = −1.1 V and δr = 0.9 V.

Assuming that the model parameters were perfectly known and considering the
dead-zone width unknown, the following values were chosen for controller parame-
ters λ = 8, ϕ = 4, γ = 1.2, δ = 1.1, φ = 1, η = 0.1 and α = 0. For the fuzzy inference
system, triangular and trapezoidal membership functions were adopted for Ûr, with
central values defined as C = {−5.0 ; −1.0 ; −0.5 ; 0.0 ; 0.5 ; 1.0 ; 5.0} × 10−1 (see
Fig. 3). It is also important to emphasize, that the vector of adjustable parameters
was initialized with zero values, D̂ = 0, and updated at each iteration step according
to the adaptation law presented in Eq. 15. Figure 4 shows the obtained results for the
tracking of xd = 0.5 sin(0.1t) m.

As observed in Fig. 4, the adaptive fuzzy sliding mode controller (AFSMC) is able
to provide trajectory tracking with small associated error and no chattering at all. It
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can be also verified that the proposed control law leads to a smaller tracking error
when compared with the conventional sliding mode controller (SMC), Fig. 4c. The
improved performance of AFSMC over SMC is due to its ability to compensate for
dead-zone effects, Fig. 4d. The AFSMC can be easily converted to the classical SMC
by setting the adaptation rate to zero, ϕ = 0.

In the second simulation study it was assumed that the model parameters were
not exactly known and nonlinear functions were assumed for gl(u) = kl(u +
0.2 sin u − δl) and gr(u) = kr(u − 0.2 cos u − δr), with kl = kr = 2 × 10−6 m/V. On this
basis, considering a maximal uncertainty of ±10% over the value of kv and variations
of ±20% in the supply pressure, Ps = 7[1 + 0.2 sin(x)] MPa, the estimates k̂v =
2 × 10−6 m/V and P̂s = 7 MPa were chosen for the computation of b̂ in the control
law. The other model and controller parameters, as well as the desired trajectory,
were chosen as before. The obtained results are presented in Fig. 5.

Despite the unknown dead-zone input and uncertainties with respect to model
parameters, the AFSMC allows the electro-hydraulic actuator to track the desired
trajectory with a small tracking error, (see Fig. 5). As before, the undesirable
chattering effect is not observed, Fig. 5b. Through the comparative analysis shown
in Fig. 5c, the improved performance of the AFSMC over the uncompensated
counterpart can be also clearly ascertained.

5 Concluding Remarks

The present work addressed the problem of controlling electro-hydraulic systems
subject to an unknown dead-zone. An adaptive fuzzy sliding mode controller was
implemented to deal with the trajectory tracking problem. The boundedness and
convergence properties of the closed-loop systems was proven using Lyapunov
stability theory and Barbalat’s lemma. The control system performance was also
confirmed by means of numerical simulations. The adaptive algorithm could auto-
matically recognize the dead-zone nonlinearity and previously compensate for its
undesirable effects.

References

1. Guan, C., Pan, S.: Nonlinear adaptive robust control of single-rod electro-hydraulic actuator with
unknown nonlinear parameters. IEEE Trans. Control Syst. Technol. 16(3), 434–445 (2008)

2. Guan, C., Pan, S.: Adaptive sliding mode control of electro-hydraulic system with nonlinear
unknown parameters. Control Eng. Pract. 16, 1275–1284 (2008)

3. Yanada, H., Furuta, K.: Adaptive control of an electrohydraulic servo system utilizing online
estimate of its natural frequency. Mechatronics 17, 337–343 (2007)

4. Yao, B., Bu, F., Reedy, J., Chiu, G.T.C.: Adaptive robust motion control of single-rod hydraulic
actuators: theory and experiments. IEEE/ASME Trans. Mechatronics 5(1), 79–91 (2000)
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12. Tao, G., Kokotović, P.V.: Adaptive control of plants with unknow dead-zones. IEEE Trans.
Autom. Control 39(1), 59–68 (1994)

13. Kim, J.H., Park, J.H., Lee, S.W., Chong, E.K.P.: A two-layered fuzzy logic controller for systems
with deadzones. IEEE Trans. Ind. Electron. 41(2), 155–162 (1994)

14. Oh, S.Y., Park, D.J.: Design of new adaptive fuzzy logic controller for nonlinear plants with
unknown or time-varying dead zones. IEEE Trans. Fuzzy Syst. 6(4), 482–491 (1998)
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