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Abstract
Sliding mode control is a very effective strategy in dealing not only with parametric uncertainties, but also with unmodeled
dynamics, and therefore has been widely applied to robotic agents. However, the adoption of a thin boundary layer
neighboring the switching surface to smooth out the control law and to eliminate the undesired chattering effect usually
impairs the controller’s performance and leads to a residual tracking error. As a matter of fact, underwater robots are very
sensitive to this issue due to their highly uncertain plants and unstructured operating environments. In this work, Gaussian
process regression is combined with sliding mode control for the dynamic positioning of underwater robotic vehicles.
The Gaussian process regressor is embedded within the boundary layer in order to enhance the tracking performance, by
predicting unknown hydrodynamic effects and compensating for them. The boundedness and convergence properties of the
tracking error are analytically proven. Numerical results confirm the improved performance of the proposed control scheme
when compared with the conventional sliding mode approach.
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1 Introduction

Underwater robotic systems play an essential role in ocean
monitoring and exploration [1, 2]. In fact, since the advent
of low-cost remotely operated vehicles (ROV) in the last
decade, there was a significant increase in the application
of underwater robots to offshore exploration [3]. In this
way, these robots have been substituting for divers in the
accomplishment of tasks that could threaten human safety
and health.
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However, despite their broad range of applications, the
problem of designing accurate positioning systems for
underwater robotic vehicles still challenges many engineers
and researchers interested in this particular branch of
engineering science. The main issue is associated with
the mathematical representation of the surrounding fluid
dynamics and its effects on the robot. A possible way
to describe the fluid-body interaction is the adoption of
computational fluid dynamics (CFD) [4–8]. CFD methods
provide a fairly reliable description of the hydrodynamic
effects, but are computationally expensive and usually
not feasible for real time controllers [9, 10]. A common
alternative to this approach is the application of a lumped-
parameters model to estimate hydrodynamic effects [11–
15]. Nevertheless, considering that a lumped-parameters
system relies on the estimation of empirical coefficients
that vary according to the flow conditions, the choice
of constant coefficients for all situations represents an
oversimplification of the fluid-body interaction [16].

In order to overcome this impasse, computational
intelligence may be used to estimate the hydrodynamic
effects. Bessa et al. [16], for instance, propose a control
scheme for an autonomous diving agent, which combines
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feedback linearization with an adaptive fuzzy inference
system. In [17], an adaptive neural network is embedded
in a sliding mode controller for the depth regulation
of a microdiving robot. Both of these works apply soft
computing algorithms to approximate the hydrodynamic
effects due to fluid-body interaction and to compensate for
them within the control law as well. However, neither of the
two mentioned approaches allows for easily obtaining the
bounds of the estimation error.

Gaussian process regression (GPR), by contrast, is
capable of providing not only a predicted value but also
a distribution for the prediction. Thus, GPR represents an
appealing approach to deal with uncertainties. A Gaussian
process may be understood as an extension of Gaussian
random variables to distributions over a suitable function
space [18]. GPR can be adopted as a non-parametric
model to represent an unknown function and to estimate
both structured and unstructured uncertainties related to
plant dynamics. For example, GPR has been combined
with linear quadratic regulators (LQR) [19, 20] and active
disturbance rejection control (ADRC) [21] to effectively
find the controllers’ open parameters from experimental
data. Other examples include model predictive control [22–
24] and model reference adaptive control [25, 26].

Because of its robustness against modeling inaccuracies,
sliding mode control (SMC) has proven to be a very attrac-
tive approach to be employed in underwater vehicles [27–
29]. Nevertheless, a well known handicap of conventional
sliding mode controllers is the chattering effect. Although
a properly designed boundary layer has the capacity to
completely eliminate chattering, the adoption of this strat-
egy turns perfect tracking into a tracking with guaranteed
precision problem [30]. Therefore, considering the afore-
mentioned benefits of Gaussian process regression, GPR
can be also used to overcome the drawbacks of smooth
sliding controllers. Aran and Unel [31], for instance, com-
bined GPR with sliding modes for the control scheme of a
diesel engine. The algorithm was trained off-line and used
to define the feedforward terms of the control law [31].

In this work, we propose the adoption of a Gaussian
process regressor within a sliding mode controller for the
dynamic positioning of underwater robotic vehicles. GPR
is embedded in the boundary layer of a smooth sliding
mode controller to predict unknown hydrodynamic effects
and compensate for them. Instead of offline supervised
training, we use the method of overlapping sliding windows,
which allows the regressor to gradually learn by interacting
with the environment. This strategy has already been
implemented in an underwater vehicle, but only for depth
control [32]. In the present paper, this approach is extended
to a multivariable control problem with four controllable
degrees of freedom. The boundedness and convergence
properties of the related tracking error is proven by means

of a Lyapunov stability analysis. Numerical simulations
are carried out in order to evaluate the control system
performance.

2 Dynamic Model

The dynamic behavior of an underwater vehicle is governed
by its rigid-body dynamics and strongly affected by the
interaction with the surrounding fluid. Rigid-body effects
are usually described by means of a system of ordinary
differential equations, which can be obtained by either New-
tonian or Lagrangian approaches. Fluid-body interaction, on
the other hand, is mathematically represented by set of par-
tial differential equations, namely Navier-Stokes equations.
However, for real-time applications, whether control or sim-
ulation problems, a lumped-parameters model is preferable
to approximate the hydrodynamic effects, and also the most
commonly used approach in the literature [11–15].

On this basis, the equations of motion for underwater
vehicles can be presented with respect to an inertial
reference frame or with respect to a body-fixed reference
frame, Fig. 1.

Equation 1 shows the equations of motion with respect to
the body-fixed reference frame [10]:

Mυ̇ + k(υ) + h(υ) + g(x) = τ , (1)

where υ = [vx vy vz ωx ωy ωz]� stands for both
linear and angular velocities in the body-fixed frame, x =
[x y z α β γ ]� represents the position/attitude vector in
the inertial frame, M is the inertia matrix, k(υ) stands
for Coriolis and centrifugal forces, h(υ) introduces the
hydrodynamic damping, g(υ) represents both gravity and
buoyancy forces, and τ is the vector of control efforts.

Nevertheless, in some kinds of underwater robots, such
as remotely operated vehicles, the metacentric height, i.e.

Fig. 1 Underwater robot with both inertial (I ) and body-fixed (B)
reference frames
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the distance between buoyancy and gravity centers, is
sufficiently large to provide the self-stabilization of roll
(α) and pitch (β) angles. This specific constructive feature
enables the number of degrees of freedom (DOF) to be
reduced to four, υ = [vx vy vz ωz]� and x = [x y z γ ]�.
Moreover, it also allows the vertical motion (heave) to be
decoupled from the horizontal plane [9, 10, 15, 33–35].

In order to develop the simulator that will be used to validate
the proposed control law, a lumped-parameters approach is
used to represent the hydrodynamic effects. Since, in the
case of underwater vehicles, the typical range of velocities
usually does not exceed 2 m/s, Morison equation can be
used to approximate fluid-body interaction [36]:

Fh = 1

2
CDAρ υ|υ| + CMρ∇υ̇ , (2)

where Fh stands for the hydrodynamic force, A is a reference
area, ρ is the fluid density, ∇ is the fluid’s displaced volume,
CD and CM are hydrodynamic coefficients.

The first term in Eq. 2 is the nonlinear hydrodynamic
damping and its effects h(υ) over the vehicle can be
described in the body-fixed reference frame by:

h(υ) = 1

2
ρ[CDx υx |υx |CDy υy |υy |CDzυz|υz|CDγ ωz|ωz|]�,

(3)

where the parameters CDx , CDy , CDz and CDγ depend not
only on the shape of the vehicle but also on flow conditions.

The second term in Eq. 2 stands for the hydrodynamic
added mass and, at low speeds, may be incorporated into
Eq. 1 by means of a diagonally dominant matrix [10]:

MA =diag{CMx
ρ∇, CMy

ρ∇, CMz
ρ∇, CMγ

ρ∇}, (4)

with parameters CMx
, CMy

, CMz
and CMγ

also relying on
vehicle’s shape and flow conditions. The matrix MA may
be combined with the rigid-body inertia matrix to obtain the
matrix M in Eq. 1.

Considering that Morison equation depends on the
estimation of empirical coefficients that vary according to
the flow conditions, we shall use it only for the simulator.
For the development of the control law, we propose
a different approach. Only the effects related to rigid-
body dynamics, which can be accurately estimated, are
incorporated into the controller in a straightforward manner.
The hydrodynamic effects, however, are predicted from data
by means of a Gaussian process regressor, which will be
incorporated in the control scheme.

3 SlidingMode Control with Gaussian
Process Regression

In this section, we present the sliding mode controller that is
augmented with Gaussian process regression for estimating

model uncertainty, and its boundedness and convergence
analysis as well.

3.1 SlidingMode Control

For control purposes, the equation of motion (1) may
be rewritten with respect to the inertial reference frame.
Recalling that

ẋ = J (x)υ , (5)

with J (x) ∈ R
4×4 being the Jacobian transformation

matrix, it can be easily verified that υ = J−1ẋ and υ̇ =
J̇

−1
ẋ + J−1ẍ.

Thus, considering that the restoring forces could be
passively compensated, the equation of motion of the
underwater robot with respect to the inertial frame, becomes

Mẍ = f + u , (6)

with M = J−�MJ−1, u = J−�τ , and f =
−J−�(MJ̇

−1
ẋ + k + h).

By taking possible uncertainties in the mathematical
model into account, Eq. 6 is equivalently written as

M̂ẍ = f̂ + u + d , (7)

with M̂ and f̂ being estimates of M and f , respectively,
and d = �M ẍ − �f representing the total uncertainty
with respect to the dynamic model, �M = M̂ − M , and
�f = f̂ − f .

Now, let the dynamic positioning system be designed
according to the sliding mode method [37, 38]. First, a
sliding surface is defined in the state space by the equation

s( ˙̃x, x̃) = ˙̃x + � x̃ , (8)

with x̃ = x − xd being the tracking error and � ∈ R
4×4

a diagonal matrix with strictly positive entries λi . It should
be highlighted that the sliding mode method assumes full
state feedback, which in practice can be obtained using state
estimators [37].

In order to avoid chattering, a thin boundary layer
neighboring the sliding surface is designed by replacing the
standard relay term sgn(·) by the saturation function [37,
38]:

sat(x) =
{

x if |x| ≤ 1,

sgn(x) if |x| > 1.
(9)

Therefore, the smooth sliding mode controller is
designed to ensure the attractiveness of the boundary layer:

u = −f̂ − d̂ + M̂
[
ẍd − � ˙̃x − κ sat(ϕ−1s)

]
, (10)

with d̂ standing for an estimate of d , κ representing the
control gain, ϕ ∈ R

4×4 being a diagonal matrix with
strictly positive entries φi , and sat(ϕ−1s) = [sat(sx/φx)

sat(sy/φy) sat(sz/φz) sat(sγ /φγ )]�. The parameters φi
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represent the width of the boundary layer related to the ith

degree of freedom and may be properly chosen in order to
minimize the chattering effects.

With the purpose of investigating the dynamics of s, Eq. 8
may be differentiated with respect to time:

ṡ = ¨̃x + � ˙̃x = ẍ − ẍd + � ˙̃x
= M̂

−1
(f̂ + u + d) − ẍd + � ˙̃x .

Then, applying the control law (10) to ṡ, we get:

ṡ = M̂
−1

(d̂ − d) − κ sat(ϕ−1s) . (11)

From Eq. 9, it can be verified that, inside the boundary
layer, i.e. when |si | ≤ φi for i = x, y, z, γ , the flow of the
vector field becomes

ṡ + κϕ−1s = M̂
−1

(d̂ − d) , (12)

which, in fact, shows that the trajectories of s are driven by

M̂
−1

(d̂ − d).
According to the sliding mode method, control perfor-

mance relies on the convergence of the tracking error to the
sliding surface. Thus, in order to improve trajectory track-
ing inside the boundary layer, it is essential to bring down
the value of s by providing a good estimate d̂ . Moreover, the
value of s can also be understood as a reasonable metric for
the success of the adopted approximation scheme.

3.2 Gaussian Process Regression

Considering that Gaussian process regressor can be used
as a non-parametric model to describe a distribution over
functions, GPR is adopted here to compute d̂ as a non-
parametric estimate of d . The estimate d̂ is used in the
sliding mode controller, Eq. 10, to enhance the tracking
performance inside the boundary layer. Because of the
association between the disturbance vector and the sliding
variables, as stated in Eq. 12, we propose the adoption of
s in the regression scheme. Despite d̂ being coupled to s

by means of M̂ , the inertia matrix is typically diagonally
dominant in underwater robots [10]. Thus, although multi-
output GP schemes have already been proposed, in this
work, we model each component of d̂ using an independent
regressor and the corresponding component of s. Following
[18] and assuming noisy observations, one has

d̄ = d(s) + ε , ε ∼ N (0, σ 2
ε ), (13)

with s being the sliding variable related to the corresponding
component of d , and the noise term ε following a normal
distribution with mean 0 and variance σ 2

ε . The index
i related to each degree of freedom is omitted in this
subsection for the sake of clarity.

A Gaussian process (GP) can be understood as a
probability distribution over the space of functions d whose
restriction to any finite number of function values is jointly

Gaussian [18]. Thus, a GP is specified through its prior
mean function μ and covariance function k:

d(s) ∼ GP
(
μ(s), k(s, s′)

)
, (14)

with μ(s) = E[d(s)] being the expectation of d(s) and
k(s, s′) = V[d(s), d(s′)] denoting the covariance of d(s)

and d(s′).
In GPR, learning a function amounts to predicting the

(normal) distribution of function values d(s∗) at arbitrary
inputs s∗ based on previous evaluations. Given N data
points DN = {sn, dn}Nn=1, the posterior mean and variance
of d∗ can be stated as

E[d(s∗)|DN ] = μ(s∗) + k�
N(s∗)(KN + σ 2

ε I )−1d̃N , (15)

V[d(s∗)|DN ] = k(s∗, s∗) − k�
N(s∗)(KN + σ 2

ε I )−1kN(s∗),
(16)

with kN(s∗) ..= [k(s∗, s1) . . . k(s∗, sN )]�, d̃N
..= [d1 −

μ(s1) . . . dN −μ(sN)]�, and the Gramian matrix KN being
defined by

KN =

⎡
⎢⎢⎢⎣

k(s1, s
′
1) k(s1, s

′
2) . . . k(s1, s

′
N)

k(s2, s
′
1) k(s2, s

′
2) . . . k(s2, s

′
N)

...
...

. . .
...

k(sN , s′
1) k(sN , s′

2) . . . k(sN , s′
N)

⎤
⎥⎥⎥⎦ . (17)

In order to define the data set DN , the values of dn and
sn are assessed by means of Eqs. 7 and 8, respectively.
Regarding the estimates of dn using Eq. 7, it should be
highlighted that, in this case, not only the state variables
but also the accelerations must be available to compute
d = M̂ẍ − f̂ − u. Considering that underwater robots are
usually equipped with inertial measurement units (IMUs),
an estimate of the vector ẍ is quite often at hand.

Furthermore, rolling regression is employed to allow
GPR to gradually learn by interacting with the environment.
Thus, a fixed sliding window with a constant size r slides
along subsets of the data as time progresses. With the aim of
providing a smooth procedure, only the oldest data entry is
updated with the arrival of new values of dn and sn, i.e. old
entries are discarded, as the window slides, the new values
assimilated, and the window overlaps with the rest of the
data.

At this point, we propose the adoption of the predictive
mean (15) to compute the components of d̂ , i.e. d̂i =
E[d(s∗

i )|DN ]. Moreover, we can also take advantage of the
predictive standard deviation to estimate the bounds of the
disturbance term, i.e. d̂ − ϑ σ ≤ d ≤ d̂ + ϑ σ , with
ϑ being used to define a proper confidence interval, σ =
[σx σy σz σγ ]�, and σ 2

i = V[d(s∗
i )|DN ], for i = x, y, z, γ .

These bounds play an essential role in the tuning of the
control gain, as can be seen in the stability analysis below.
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3.3 Boundedness and Convergence Analysis

In order to demonstrate the boundedness and convergence
properties of the proposed control scheme, we first have to
prove the attractiveness of the boundary layer.

From Eq. 11, it is noted that the convergence of s can be
investigated in terms of its components. Thus, let a positive-
definite Lyapunov function candidate be defined for each
degree of freedom

Vi(t) = 1

2
s̄2
i , (18)

with i = x, y, z, γ . By defining s̄i according to

s̄i ( ˙̃xi, x̃i) = si − φi sat(si/φi) , (19)

its absolute value may be understood as the distance
between each si and the corresponding boundary layer.

From Eq. 11 and noting that ˙̄si = ṡi outside the boundary
layer, then the time derivative of Vi becomes:

V̇i(t) = s̄i ṡi = s̄i

[( 4∑
j=1

M̂−1
ij (dj − d̂j )

)
− κ sat(si/φi)

]
,

with dj and d̂j representing the j th components of d and d̂ ,
respectively, and M̂−1

ij being the element in the ith row and

j th column of the matrix M̂
−1

.
Moreover, since s̄i = 0 in the boundary layer, it can be

verified that V̇i(t) = 0 in that region.
Now, by observing that sat(si/φi) = sgn(s̄i ) outside the

boundary layer, we obtain

V̇i(t) = −s̄i

[( 4∑
j=1

M̂−1
ij (d̂j − dj )

)
+ κ sgn(s̄i )

]
.

Considering that | ∑4
j=1 M̂−1

ij (d̂j − dj )| ≤ ‖M̂−1
(d̂ −

d)‖∞ ≤ ‖M̂−1‖∞‖(d̂ − d)‖∞ ≤ ϑ ‖M̂−1‖∞‖σ‖∞
and defining the control gain according to κ > η +
ϑ ‖M̂−1‖∞‖σ‖∞, with η being a strictly positive parame-
ter, we get

V̇i(t) ≤ −η|s̄i | .

This implies that Vi(t) ≤ Vi(0) and that any initial state
will be attracted to the boundary layer. Moreover, recalling
that Vi is positive definite, its time derivative is equal to
zero, V̇i(t) = 0, inside the boundary layer, and V̇i(t) < 0
outside of it, we can assure that the states remain in the
boundary layer as t → ∞.

Now, it can be proved that, once inside the boundary
layer, the tracking error exponentially converges to a small
bounded region in the vicinity of ( ˙̃xi, x̃i) = (0, 0). From
Eq. 8 and considering that −φi ≤ si( ˙̃xi, x̃i) ≤ φi inside the
boundary layer, we have for each degree of freedom:

−φi ≤ ˙̃xi + λix̃i ≤ φi . (20)

Thus, multiplying (20) by eλi t and integrating between 0
and t :

−φie
λi t ≤ ( ˙̃xi + λix̃i)e

λi t ≤ φie
λi t ,

−φie
λi t ≤ d

dt
(x̃ie

λi t ) ≤ φie
λi t ,

−φi

∫ t

0
eλiξ dξ ≤

∫ t

0

d

dξ
(x̃ie

λiξ ) dξ ≤ φi

∫ t

0
eλiξ dξ ,

−φi

λi

eλi t + φi

λi

≤ x̃i (t)e
λi t − x̃i (0) ≤ φi

λi

eλi t − φi

λi

,

−φi

λi

−
[
|x̃i (0)| + φi

λi

]
e−λi t ≤ x̃i (t) ≤ φi

λi

+
[
|x̃i (0)| + φi

λi

]
e−λi t .

Furthermore, for t → ∞:

−φi

λi

≤ x̃i ≤ φi

λi

. (21)

By applying Eqs. 21 to 20, it can be easily verified that:

−2φi ≤ ˙̃xi ≤ 2φi . (22)

Hence, it follows that the tracking error vector will
exponentially converge to the closed region � = {( ˙̃x, x̃) ∈
R

8 : | ˙̃xi | ≤ 2φi and |x̃i | ≤ φi/λi ; i = x, y, z, γ }.
It should be noted that, in theory, since Gaussian

distribution has infinite support, it will always be possible
for a value of d to arise outside the bounds of confidence.
However, as a matter of fact, in real world applications,
unlimited disturbances do not usually occur. In addition,
parameters η and ϑ may be chosen appropriately to capture
the robustness that is desired.

Finally, the proposed control scheme is summarized in
Algorithm 1.

Algorithm 1 Dynamic positioning with SMC and GPR.

1: Define control parameters
2: Specify GP prior (mean μ, kernel k)
3: Define initial states: ẋ0, x0

4: Initialize data set: D0

5: loop
6: Evaluate desired trajectory: ẍd, ẋd, xd

7: Compute tracking error: ˙̃x, x̃

8: s ← ˙̃x + � x̃

9: d̂i ← E[d(s∗
i )|Dn−1] ; i = x, y, z, γ

10: σ 2
i ← V[d(s∗

i )|Dn−1] ; i = x, y, z, γ

11: κ ← η + ϑ ‖M̂−1‖∞‖σ‖∞
12: u ← −f̂ − d̂ + M̂[ẍd − � ˙̃x − κ sat(ϕ−1s)]
13: Apply u to the dynamic model
14: Update states: ẋ, x

15: Update GP posterior: E[d(s∗
i )|Dn], V[d(s∗

i )|Dn]
16: end loop
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Table 1 Influence of the
hyperparameters on the overall
control performance

Case σε σf

∫ |κ|dt
∫ |uz|dt

∫ |z̃|dt

Sim. 1 — — 0.6188 98.5227 0.2979

Sim. 2a 1.2 0.1 0.5854 98.4066 0.2757

Sim. 2b 1.2 0.5 1.3398 98.1947 0.0351

Sim. 2c 1.2 1.0 1.4598 98.0554 0.0102

Sim. 3a 0.8 0.1 0.5515 98.2922 0.2531

Sim. 3b 0.8 0.5 0.9802 98.1171 0.0244

Sim. 3c 0.8 1.0 1.0207 98.0369 0.0071

Sim. 4a 0.4 0.1 0.4424 97.9713 0.1805

Sim. 4b 0.4 0.5 0.5553 98.0450 0.0121

Sim. 4c 0.4 1.0 0.5608 98.0331 0.0049

Sim. 5a 0.1 0.1 0.2053 97.8546 0.0363

Sim. 5b 0.1 0.5 0.2079 98.0535 0.0069

Sim. 5c 0.1 1.0 0.2080 98.0601 0.0067

4 Simulation Results

The proposed control scheme is now evaluated by means of
numerical simulations considering a computer implementa-
tion of the dynamic model in C++. The fourth order Runge-
Kutta method is employed and sampling rates of 500 Hz for
the controller and 1 kHz for system dynamics are chosen.
In the dynamic model, the inertia matrix and the hydro-
dynamic quadratic damping are assumed to be, respec-
tively, M = diag{80 kg, 80 kg, 100 kg, 8 kgm2} and h =
[125 υx |υx | N 175 υy |υy | N 250 υz|υz| N 12.5 ωz|ωz| Nm]�.
By numerically integrating the dynamic model, state vari-
ables become available to the control scheme at each time
step. In real world applications, on the other hand, state esti-
mation is usually performed using an acoustic positioning
system, with a network of transponders and receivers, and
inertial measurement units [3]. Moreover, with the view to

simulate an actual underwater robot, the control scheme is
evaluated in the presence of actuator saturation.

Control parameters are set to λi = 0.4, φi = 0.05, η =
0.005, and ϑ = 2. In addition, considering the previously
mentioned issues with respect to the estimation of the fluid-
body interaction, added mass and hydrodynamic damping
are assumed to be unknown and not taken into account in
the control law.

Regarding the adopted Gaussian process regressor, used
to estimate the unknown hydrodynamic effects, the squared
exponential kernel is chosen as covariance function:

k(si, s
′
i ) = σ 2

f exp

(
−‖si − s′

i‖2

2�2

)
(23)

with � being the length-scale and σf representing the
prior standard deviation of the process. In addition to the

Fig. 2 Influence of σε and σf

on the total control action and
total tracking error
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free parameters � and σf , the noise standard deviation σε

from Eq. 13 represents the third hyperparameter of the GP
distribution. In all simulations the prior mean is set to zero
and the length-scale is defined as � = 0.05.

In order to properly tune σε and σf , their effects are
assessed by means of numerical simulations. Assuming that
the initial state is equal to the initial desired state, i.e.
z̃(0) = [˙̃z z̃]� = 0, depth tracking of a sinusoidal trajectory
zd = 0.5[1 − cos(πt/15)] m is taken into account. Table 1
presents the sum of the absolute values of the gain κ , of
the control signal uz, and of the tracking error z̃ obtained
in 13 simulation studies. For comparison purposes, the
conventional sliding mode controller is also applied to the
same tracking problem, Sim. 1. By combining 4 different
values for σε and 3 different values for σf , the influence
of these hyperparameters is evaluated in the other 12 cases,
Sim. 2a–5c. It should be noted that the proposed controller
is easily turned into the classical sliding mode scheme by
setting d̂ = 0 and defining a fixed gain κ . Figure 2 shows
the influence of the hyperparameters on the overall control
performance, and their effects on the regression output are
graphically depicted in Fig. 3.

Both Table 1 and Fig. 2 show that, when compared
with the conventional sliding mode controller (SMC), the
proposed scheme (SMC+GPR) is able to significantly
increase the tracking efficiency, by reducing not only
the overall tracking error but also the required control

effort. It can be observed in Fig. 2 that all points related
to the proposed controller, Sim. 2a–5c, are located on
the left side of the plot and below the standard SMC,
Sim. 1, which demonstrates the controller’s efficacy when
combined with GPR. This improved performance is due
to the regressor’s ability to predict and compensate for
model uncertainties. Figure 2 also shows the consistency
with respect to the control performance, even considering
variations in hyperparameters, when compared with the
classical SMC. However, Fig. 3 shows that proper choice
of hyperparameters can further enhance GPR performance.
For instance, it can be observed in Fig. 3 that a higher
noise variance σ 2

ε leads to a more scattered estimate d̂z.
Furthermore, an increase in the prior variance of the process
σ 2

f improves the ability of the GPR algorithm to correlate
inputs that lie far apart in the data set. As a matter of
fact, according to Table 1, it can be verified that the value
of σf plays an essential role, not only on the outcome of
the regressor, but also on the tracking performance. For
instance, by increasing the prior standard deviation from
σf = 0.1 to σf = 1.0, the sum of the tracking error

∫ |z̃|dt

drops about 97%, in the first three cases: σε = 1.2 (from
0.2757 to 0.0102), σε = 0.8 (from 0.2531 to 0.0071), and
σε = 0.4 (from 0.1805 to 0.0049); and 81% with σε =
0.1 (from 0.0363 to 0.0067). Moreover, even considering
this strong enhancement of the tracking performance, the
total control action

∫ |uz|dt is not increased, remaining

Fig. 3 Estimate of dz: solid line
depicting d̂z and shaded area
representing the confidence
interval related to ±2 σz
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Fig. 4 Depth tracking of zd = 0.5[1 − cos(πt/15)] m with z̃(0) 
= 0

almost the same in all four cases. This is mainly due to
the gain growth, that is how the proposed controller deals
with uncertainties regarding the estimate d̂. By setting the

control gain according to κ = η + ϑ ‖M̂−1‖∞‖σ‖∞,
it can be observed that κ grows as the GP posterior
variance increases. This ensures trajectory tracking even
when the regressor is not able to provide a proper estimate

d̂ . However, in this case, with a lower d̂ and a higher σ ,
the performance of the proposed control scheme becomes
similar to that obtained with a conventional sliding mode
controller.

It should be noted that in all simulations the size of the
sliding window is set to 20 samples, i.e. r = 20. Initially,
while the window is not fully filled, GPR is computed using

Fig. 5 Phase space with the conventional and the proposed schemes
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Fig. 6 Dynamic positioning in R
3

the available data. However, as time progresses and the first
20 samples are gathered, the window starts to slide. Thus,
one at a time, the old entries are discarded and the new
values are assimilated in their place. The previous window
overlaps the next window in the rest of the data.

Now, by keeping the hyperparameters as � = 0.05, σf =
1.0, and σε = 0.4, the performance of the proposed control
scheme is evaluated in two new situations.

First, depth tracking of the previous sinusoidal trajectory
is assumed, but in this case an initial tracking error is taken
into account, z̃(0) = [0.0 0.6]�. Figures 4 and 5 present the
obtained results.

As observed in Fig. 4a, even subject to unmodeled
dynamics and actuator saturation, the proposed control
scheme is able to track the desired trajectory. Moreover,
Fig. 4 shows that the adoption of the Gaussian process
regressor within the boundary layer (SMC+GPR) allows
a stronger improved performance when compared to the
conventional sliding mode controller (SMC). In fact, a
much smaller tracking error, Fig. 4b, is obtained without
increasing the control effort, Fig. 4c. The phase spaces
shown in Fig. 5 highlight the decrease of the tracking error
achieved with GPR. It can be noted in Fig. 5a that the
conventional sliding mode controller leads to a residual
steady-state error around the desired goal, z̃ = 0, depicted
as ∗ in the plot. The proposed control scheme, on the other
hand, is able to provide perfect tracking (see Fig. 5b) despite
the presence of modeling inaccuracies. This efficacy is due

Fig. 7 State variables in the time domain for the dynamic positioning in R
3
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to the ability of the Gaussian process regressor to recognize
and previously compensate for unmodeled dynamics.

The second numerical simulation considers the dynamic
positioning in R

3. Starting from the initial state x0 =
[0 0 0 0]� at rest, the robot moves itself every 30 seconds to
a different position/attitude, according to x1 = [0 3 0 0]�,
x2 = [0 3 1 π/2]�, x3 = [3 3 1 π/2]�, x4 = [3 1 1 π ]�,
x5 = [1 1 1 3π/2]�, and x6 = [1 1 3 3π/2]�. Once a
desired state has been reached, the robot must maintain its
position/attitude until the next set-point change. The desired
attitude γd is chosen to keep the robot always pointing in the
direction of the horizontal motion. The obtained results are
presented in Figs. 6–8.

By observing Fig. 6, it can be verified that the proposed
controller successfully drives the robot to the desired states.
In addition, Fig. 7 shows that the underwater robot is
able to keep its position/attitude as well, even considering
actuators’ saturation and the fact that hydrodynamic effects
are completely unknown during the controller design phase.
According to Fig. 8, it can be noted that the thrust
forces are assumed to saturate at 25 N. Moreover, Figs. 4c
and 8 show that, by embedding GPR within the sliding

mode controller, the resulting control approach is able to
completely eliminate chattering without compromising the
tracking performance.

5 Concluding Remarks

The present work addresses the dynamic positioning
of underwater robots by combining Gaussian process
regression with sliding mode control. Considering that
underwater robots are subject to unknown hydrodynamic
effects, GPR is embedded within the boundary layer
to predict and compensate for these and other possible
modeling inaccuracies as well. The boundedness and
convergence properties of the closed-loop signals are
analytically proven. By means of numerical simulations,
the influence of the hyperparameters on both regressor
and controller performance is assessed. As expected, a
higher noise variance leads to a more scattered estimate,
and an increase in the prior variance of the process
improves the ability of the GPR algorithm to correlate
inputs that lie far apart in the data set. Based on the

Fig. 8 Control signals in the time domain for the dynamic positioning in R
3
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obtained results, it should be emphasized that Gaussian
process regression proved to be quite effective as a non-
parametric model to compensate for unmodeled dynamics.
In fact, when compared with the conventional sliding mode
controller, the proposed scheme (SMC+GPR) is able to
significantly increase the tracking efficiency, by reducing
not only the overall tracking error, but also the required
control effort. It can be also verified that the proposed
control approach is able to provide accurate trajectory
tracking without the undesired chattering effects. The
adoption of the predictive variance to estimate the bounds
of the disturbance term provides an appealing approach to
conveniently tune the gain of the sliding mode controller.
Moreover, considering that the method of overlapping
sliding windows has been adopted, the computational
cost associated with matrix inversion can be conveniently
set to the available hardware. By keeping computational
complexity low makes the proposed control approach also
suitable for embedded devices. Investigating the method’s
applicability on hardware (including, e.g., appropriate state
estimation) and thus evaluating its performance in practice
is an important aspect for future work.
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