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Abstract

Underactuated mechanical systems are frequently encountered in several industrial and real-world applications such as

robotic manipulators with elastic components, aerospace vehicles, marine vessels, and overhead container cranes. The

design of accurate controllers for this kind of mechanical system can become very challenging, especially if a high level of

uncertainty is involved. In this paper, an adaptive fuzzy inference system is combined with a sliding mode controller in

order to enhance the control performance of uncertain underactuated mechanical systems. The proposed scheme can

deal with a large class of multiple-input–multiple-output underactuated systems subject to parameter uncertainties,

unmodeled dynamics, and external disturbances. The convergence properties of the resulting intelligent controller

are proved by means of a Lyapunov-like stability analysis. Experimental results obtained with an overhead container

crane demonstrate not only the feasibility of the proposed scheme, but also its improved efficacy for both stabilization

and trajectory tracking problems.
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1. Introduction

A mechanical system is defined as underactuated if it
has more degrees of freedom (DOFs) to be controlled
than independent control inputs/actuators. Basically,
underactuation can arise due to several reasons
(Seifried, 2013): (i) intentionally, in view of design
issues; (ii) owing to DOFs resulting from body elasti-
city; and (iii) upon actuator failure. Therefore, under-
actuated mechanical systems (UMS) can be commonly
found in many branches of industrial activity.

Despite the broad spectrum of applications, ranging
from robotic manipulators and overhead cranes to
aerospace vehicles and watercrafts, the problem
of designing accurate controllers for underactuated
systems is, however, much more difficult than for
fully actuated ones. For the class of underactuated
multibody systems with nonintegrable constraints,
controllability and stabilizability conditions are
analyzed in Reyhanoglu et al. (1999).

In fact, the dynamic behavior of an UMS is fre-
quently uncertain and highly nonlinear, which makes

the design of control schemes for such systems a chal-
lenge for conventional and well-established methods.
Pervozvanski and Freidovich (1999), for example,
show that proportional–integral–derivative (PID) con-
trollers are not the most suitable choice for underactu-
ated systems. In these cases, only the actuated states
can be easily stabilized by this type of controller. For
the stabilization of all coordinates, however, the choice
of the parameters is not straightforward. For the
special case of manipulators with elastic joints,
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Pervozvanski and Freidovich (1999) suggest criteria for
choosing stabilizing PID gains.

Therefore, much effort has been made in order to
improve both set-point regulation and trajectory track-
ing of underactuated mechanical systems. The most
common strategies are controlled Lagrangians (Bloch
et al., 2000, 2001), servo-constraint approaches (Blajer
and Kolodziejczyk, 2007; Kovács and Bencsik, 2012;
Bencsik et al., 2017; Otto and Seifried, 2018), backstep-
ping (Chen and Huang, 2012; Xu and Hu, 2013; Rudra
et al., 2014) and other passivity-based methods (Ortega
et al., 2002; Gómez-Estern and der Schaft, 2004; Ryalat
and Laila, 2016), as well as feedforward control by
model inversion (Seifried, 2012a, 2012b) and input
shaping (Singhose et al., 1994; Masoud and Daqaq,
2006; Maghsoudi et al., 2017), feedback linearization
(Spong, 1994; Seifried, 2013), adaptive approaches
(Nguyen and Dankowicz, 2015; Pucci et al., 2015),
and sliding mode control (Ashrafiuon and Erwin,
2008; Xu and Özgüner, 2008; Qian et al., 2009;
Sankaranarayanan and Mahindrakar, 2009; Muske
et al., 2010).

The method of controlled Lagrangians uses the con-
trol input to customize the Lagrangian of the plant.
Thereafter, energy methods can be used to inject damp-
ing into the system. Bloch et al. (2000, 2001) show that
this approach can be used for the stabilization of some
types of underactuated mechanical systems. By also
using interconnection and damping assignment,
Ortega et al. (2002) extend the method of controlled
Lagrangians and apply it to the stabilization of a
class of UMS with no physical damping. Gómez-
Estern and der Schaft (2004) show that, under certain
conditions, physical damping can also be taken into
account without compromising passivity.
Nevertheless, according to Liu and Yu (2013), passiv-
ity-based schemes have some limitations with respect to
their practical application and are only applicable to
systems with less than two relative degrees.

Trajectory tracking can be achieved by using an
inverse model as feedforward control, which in turn is
combined with a feedback controller. However, deriv-
ing the inverse model is usually not straightforward for
nonlinear underactuated multibody systems. A numer-
ical method for computing the inverse model has been
proposed in Blajer and Kolodziejczyk (2004). It has
been implemented and shown to be adequate for real-
time applications in Otto (2016) and Otto and Seifried
(2018). In Otto and Seifried (2018), the feedforward
control based on the inverse model was augmented by
a linear quadratic regulator (LQR)-based feedback
loop to stabilize the tracking error.

Feedback linearization is a very common nonlinear
control strategy, especially in the field of robotic
manipulators, where it is also known as computed-

torque (Slotine and Li, 1991). It is closely related
to the inverse model approach and is shown to be
applicable for underactuated systems in terms of partial
feedback or input–output linearization (Spong, 1994).
Nevertheless, feedback linearization in its basic form
needs an accurate system model. Moreover, by apply-
ing partial feedback linearization, a thorough investi-
gation of the internal dynamics, analyzed as zero
dynamics, is necessary (Olfati-Saber, 2001).

Although several methods have been proposed in the
last years, it should be highlighted that the control of
uncertain UMS remains hard to be accomplished, espe-
cially if a high level of uncertainty is involved (Liu and
Yu, 2013).

In general, model and parameter uncertainties can
be handled by either robust or adaptive control
schemes. In Pucci et al. (2015), for example, a collo-
cated adaptive controller is proposed by extending the
adaptive approach presented in Slotine and Weiping
(1988) to the underactuated case. Nguyen and
Dankowicz (2015) introduce an adaptive control
scheme for underactuated robotic manipulators.

Sliding mode control is known to be one of the most
successful approaches in handling bounded uncertain-
ties (Shtessel et al., 2014). By means of a discontinuous
law, perfect tracking on the sliding surface can theoret-
ically be achieved. However, while the design of a stable
sliding manifold is straightforward for fully actuated
systems, this is not the case for underactuated ones.
Ashrafiuon and Erwin (2008) propose a method based
on the linearization of the model equations to derive
stable sliding surfaces. Guo et al. (2014) also linearize
the system dynamics about the equilibrium point, and
then LQR-based and linear-matrix-inequality-based
strategies are used to obtain the stabilizing manifold
parameters. In Muske et al. (2010), an optimization
scheme is used to derive the switching surface. An alter-
native method is proposed in Qian et al. (2009), where a
hierarchical structure is adopted for the design of the
stable manifold.

However, the discontinuous relay term in the sliding
mode controller must be smoothed out to avoid the
undesirable chattering effects. Although the adoption
of properly designed boundary layers has proven effect-
ive in completely eliminating chattering, it leads to an
inferior tracking performance notwithstanding. In this
case, soft computing approaches may be used in order
to improve the tracking performance (Yu and Kaynak,
2017).

Due to its ability to undertake assignments in an
environment of imprecision and imperfect information,
fuzzy logic has been widely employed to both identifi-
cation and control of uncertain dynamical systems
(Zadeh, 2008). Another important advantage of fuzzy
logic is the capacity to deal with information described
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in natural language (Zadeh, 1996). Hence, it allows
human experience and knowledge to be expressed in
an algorithmic manner, as well as incorporated into
mathematically designed control laws.

On this basis, fuzzy logic has also been used to cope
with uncertainties in the control of underactuated
mechanical systems. Nakshatharan et al. (2015) use a
fuzzy sliding surface for the stabilization of an under-
actuated ball and beam system driven by shape memory
alloy actuators. In Yue et al. (2016), an adaptive fuzzy
sliding mode controller is developed for a wheeled
inverted pendulum. Li et al. (2014) design an adaptive
fuzzy scheme based on the sliding mode method for
underactuated mobile manipulators. Adaptive fuzzy
sliding mode control has been also applied to the sta-
bilization of an overhead container crane with two
DOFs in Park et al. (2008). This approach is then
extended for overhead cranes with three DOFs in
Park et al. (2014).

In the special case of only one control input, that is,
single-input–multiple-output (SIMO) systems, some
different approaches have been proposed. In Zhang
et al. (2014), for example, a self-organizing fuzzy
algorithm is adopted to adjust the weighting matrix
associated with the cost function of an optimal control-
ler. Hwang et al. (2014) propose an adaptive fuzzy hier-
archical sliding mode controller, where three distinct
adaptive fuzzy inference systems should be adopted
for each DOF. An adaptive fuzzy backstepping control
scheme is also suggested by Azimi and Koofigar (2015).

For the more general problem of multiple-input–
multiple-output (MIMO) underactuated mechanical
systems, Wu et al. (2017) propose a robust approach
by combining adaptive fuzzy inference systems with
H1 control. In Wu et al. (2016), this control scheme
is employed to reduce the sway motion of the payload
in tower cranes.

In all aforementioned fuzzy schemes, either all error
variables (Zhang et al., 2014; Nakshatharan et al.,
2015) or all state variables (Park et al., 2008; Hwang
et al., 2014; Li et al., 2014; Park et al., 2014; Azimi and
Koofigar, 2015; Wu et al., 2016; Yue et al., 2016; Wu
et al., 2017) are taken into account in the premises of
the fuzzy rules. As a major drawback of this approach,
as remarked by Bessa and Barrêto (2010) and Bessa
et al. (2012), it can be asserted that the number of
fuzzy sets and fuzzy rules becomes incredibly huge for
large scale systems with several DOFs, which could
compromise its applicability.

In this paper, an intelligent controller is proposed for
MIMO underactuated mechanical systems subject to
parameter uncertainties as well as unmodeled dynam-
ics. The adopted approach is based on the sliding mode
control to confer robustness against modeling inaccura-
cies and external disturbances, but an adaptive fuzzy

inference system is embedded within the control law
to improve set-point regulation and trajectory tracking.
With the view to reduce the number of fuzzy sets and
fuzzy rules, the switching variable, instead of all state
variables, is considered in the premise of the related
fuzzy rules. The convergence properties are demon-
strated through a Lyapunov-like stability analysis. In
order to illustrate the application of the intelligent con-
troller and to evaluate its efficacy, the control law was
implemented and tested in a 1:6 scale experimental con-
tainer crane.

Thus, the following features of the proposed strategy
can already be anticipated: (i) the ability to deal with a
large class of MIMO underactuated systems; (ii) the
robustness to parameter uncertainties, unmodeled
dynamics, and external disturbances; (iii) the necessity
of only one fuzzy inference system per control input;
and (iv) the adoption of a single variable in the premise
of the fuzzy rules. The last two features not only sim-
plify the design process and the resulting control law,
but also reduce the required computational time. These
attributes, when combined with the first two, allow for
the intelligent controller to be straightforwardly imple-
mented in industrial and real-world applications.

As a general objective of this paper, it is shown that
soft computing techniques can be easily associated with
already available control methods for underactuated
systems, in order to enhance the overall system
performance.

Hence, a sliding mode approach defined in
Ashrafiuon and Erwin (2008) is briefly reviewed in
Section 2. This sliding mode controller is then used as
a basis for the intelligent strategy proposed in Section 3.
Finally, by means of experimental results, both control
schemes are compared in Section 4, and the concluding
remarks are presented in Section 5.

2. Sliding mode control

The equations of motion of a mechanical system with n
DOFs and m actuator inputs are usually expressed in
the following vector form (Seifried, 2013)

MðqÞ €qþ kðq, _qÞ ¼ gðq, _qÞ þ BðqÞu ð1Þ

where q 2 R
n is the vector of generalized coordinates,

u 2 R
m the actuator input vector, MðqÞ 2 R

n�n is the
positive definite and symmetric inertia matrix,
kðq, _qÞ 2 R

n takes the Coriolis and centrifugal effects
into account, gðq, _qÞ 2 R

n represents the generalized
applied forces, and BðqÞ 2 R

n�m is the input matrix.

Remark 1. The mechanical system described in equation
(1) is called fully-actuated if m ¼ rankðBÞ ¼ n, or
underactuated if m ¼ rankðBÞ5 n.

Bessa et al. 1523



Now, considering an underactuated mechanical
system, the vector of generalized coordinates can be
partitioned as q ¼ ½q>a q>u �

>, where qa 2 R
m and

qu 2 R
n�m denote, respectively, actuated and unactu-

ated coordinates. Without loss of generality, the input
matrix can be also conveniently assumed to be
BðqÞ ¼ ½Im 0>�>, where Im is the m�m identity
matrix, and 0 is the ðn�mÞ �m zero matrix. Hence,
equation (1) may be rewritten as

Maa Mau

M>au Muu

� �
€qa

€qu

� �
¼

fa þ u

fu

� �
ð2Þ

where fa ¼ ga � ka and fu ¼ gu � ku.
Then, in order to develop a sliding mode controller,

Ashrafiuon and Erwin (2008) propose to solve equation
(2) for the accelerations

€qa ¼M 0�1
aa ðf

0
a þ uÞ ð3aÞ

€qu ¼M0�1uu ðf
0
u �M>auM

�1
aa uÞ ð3bÞ

where M0aa ¼Maa �MauM
�1
uu M

>
au, M0uu ¼Muu�

M>auM
�1
aa Mau, f 0a ¼ fa �MauM

�1
uu fu, and f 0u ¼ fu�

M>auM
�1
aa fa.

Hence, by defining ~q ¼ q� qd as the tracking error
vector, a sliding manifold can be established in the state
space by the equation sð~qÞ ¼ 0, with sð~qÞ : R

n
! R

m

defined as a weighted combination of both position
and velocity tracking error (Ashrafiuon and Erwin,
2008)

s ¼ aa _~qa þ ka~qa þ au _~qu þ ku~qu
¼ aa _qa þ au _qu þ sr

ð4Þ

with sr ¼ �aa _qda þ au _qdu þ ka~qa þ ku~qu, and constant
matrices aa 2 R

m�m, ka 2 R
m�m, au 2 R

m�ðn�mÞ, and
ku 2 R

m�ðn�mÞ.
On this basis, following Ashrafiuon and Erwin

(2008), the sliding mode controller is defined as

u ¼ �M̂
�1

s ½f̂s þ _sr þ jsgnðsÞ� ð5Þ

where M̂s and f̂s are estimates of Ms ¼

aaM
0�1
aa � auM

0�1
uu M>auM

�1
aa and fs ¼ aaM

0�1
aa f 0a

�auM
0�1
uu f 0u , respectively, and

j sgnðsÞ ¼ ½�1 sgnðs1Þ . . . �m sgnðsmÞ�
>

ð6Þ

with the control gain j defined with respect to the
bounds of fs.

For more details about the stability analysis of the
sliding mode controller defined in equation (5) the
reader is referred to Ashrafiuon and Erwin (2008).

3. Adaptive fuzzy sliding mode control

Conventional controllers frequently rely on an accurate
model of the plant, which in general is very difficult to
achieve. Even in the case of sliding modes, the discon-
tinuous relay term in the control law has to be
smoothed out in order to avoid the undesirable chat-
tering effects. However, despite its capacity to reduce
chattering, the adoption of a boundary layer leads to an
inferior tracking performance, which is even more wor-
rying in the case of systems subject to a high degree of
uncertainty. In order to overcome these handicaps,
computational intelligence may be conveniently com-
bined with sliding modes, leading to a robust intelligent
control approach.

According to Antsaklis (2001), intelligent controllers
should emulate important characteristics of human
intelligence. In this context, among other attributes,
an intelligent controller must at least be able to: (i)
incorporate some prior knowledge about the plant, in
order to make reasonable predictions about the
expected dynamic behavior; (ii) adapt itself to changes
in the plant and in the environment; and (iii) learn by
experience as well as acquire knowledge by interacting
with the environment, to improve the capacity to pre-
dict plant dynamics. Also, it is worth noting that,
depending on application requirements, the controller
should be robust to external disturbances, with the view
to ensure safe operating conditions.

Thus, in order to comply with prediction and
robustness issues, here a sliding mode approach is
adopted. As a matter of fact, any model-based control-
ler is able to predict to some extent the dynamics of
the plant, but the robustness of the sliding mode
method is a really attractive feature. In addition,
fuzzy logic is chosen in this work to fulfill the adapta-
tion and learning attributes. On this basis, an adaptive
fuzzy inference system is embedded in the sliding mode
controller to learn about the actual dynamic behavior
of the plant and to compensate for the unmodeled
effects.

Therefore, in the following only a partial knowledge
about the mechanical system in equation (1) is
considered. In this case, uncertainties concerning the
inertia matrix, �M, and applied forces, �f, as well as
eventual external perturbations e are also taken into
account

ðMþ�MÞ €q ¼ fþ�fþ uþ e ð7Þ

For simplicity reasons, all uncertainties and external
perturbations in equation (7) are now enclosed in a
new disturbance vector d ¼ eþ�f��M €q. Also, for
control purposes, this vector is partitioned as
d ¼ ½d>a d>u �

>.
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Now, following Ashrafiuon and Erwin (2008), the
new uncertain underactuated mechanical system can
be solved for the accelerations

€qa ¼M0�1aa ðf
0
a þ uþ d 0aÞ ð8aÞ

€qu ¼M0�1uu ðf
0
u �M>auM

�1
aa uþ d 0uÞ ð8bÞ

with M 0
aa, M

0
uu, f

0
a , and f 0u defined as before, and

d 0a ¼ da �MauM
�1
uu du, and d 0u ¼ du �M>auM

�1
aa da. Also,

a combined disturbance vector can be stated as
ds ¼ aaM

0�1
aa d 0a � auM

0�1
uu d 0u.

At this point, regarding the development of the con-
trol law, the following assumptions should yet be made:

Assumption 1. The inertia matrix M is symmetric,
bounded, and positive definite for any bounded q.

Assumption 2. The vector of disturbances d is unknown
but bounded.

Assumption 3. The vector of generalized coordinates q is
available.

Assumption 4. The desired trajectory qd is once differen-
tiable with respect to time. Furthermore, every compo-
nent of qd is available and with known bounds.

Remark 2. From Assumptions 1 and 2, it can be clearly
ascertained that d 0a and d 0u are bounded. Since aa and au
are chosen by the designer of the control law, it can also
be inferred from these assumptions that ds is bounded.

Assumption 1 as well as Assumptions 2–4 are stand-
ard premises in the fields of multibody systems (Slotine
and Li, 1991; Spong et al., 2005) and sliding mode
control (Utkin, 1992), respectively. Moreover, due
to its adaptive feature, the proposed intelligent control-
ler can still deal with uncertainties in underactuated
mechanical systems, even if Assumption 2 is
not taken into account. However, this premise
is required if, beyond convergence and stability, also
robustness with respect to the considered bounds is to
be claimed.

Thus, we propose the adoption of an intelligent com-
pensator d̂ to cope with the uncertainties and external
disturbances related to ds. For each component d̂i,
a zero order Takagi–Sugeno–Kang (TSK) inference
system (Jang et al., 1997) is established. The associated
fuzzy rules can be stated in a linguistic manner as
follows

If si is Sij, then d̂ij ¼ D̂ij; j ¼ 1, 2, . . . ,N

where Sij are fuzzy sets, whose membership functions
could be properly chosen.

Considering that the rules define numerical values as
output D̂ij, the final output of each d̂ can be computed
by a weighted average

d̂iðsiÞ ¼ D̂
>

i �iðsiÞ ð9Þ

where D̂i ¼ ½D̂i1 . . . D̂iN�
> are vectors containing the

attributed values D̂ij to the fuzzy rules, �iðsiÞ ¼
½ i1ðsiÞ . . .  iNðsiÞ�

>, with  ijðsiÞ ¼ wij=
PN

j¼1 wij, and
wij is the firing strength of each rule.

In order to ensure the best possible estimate, let the
vector of adjustable parameters be automatically
updated by the following adaptation law

_̂
Di ¼ ’i si�iðsiÞ ð10Þ

where ’i are strictly positive constants related to the
adaptation rate. In order to avoid unnecessary over-
shoots, the adaptation law may be activated as soon
as the sliding variable reaches the boundary layer.

Remark 3. Considering that fuzzy logic can perform
universal approximation (Kosko, 1994), the output of
the TSK inference systems can approximate ds to
an arbitrary degree of accuracy d ¼ d̂

�

� ds, where d̂
�

is the output related to set of optimal parameter
vectors D̂

�

i .
Therefore, the intelligent compensator can be added

to the sliding mode controller as follows

u ¼ �M̂
�1

s ½f̂s þ d̂þ _sr þ j sgnðsÞ� ð11Þ

where the components of j 2 R
m are defined according

to �i � �þ �i þ jd̂ij, and � is a strictly positive constant
related to the reaching time.

It should be highlighted that the adoption of a single
variable on the premise of the fuzzy rules allows the
reduction of computational complexity. In fact, if
either n generalized coordinates q or n tracking errors
~q have been adopted as inputs, instead of the sliding
variables, the number of fuzzy rules and the adaptive
laws that have to be integrated at each time step would
exponentially grow from m to mn. Keeping computa-
tional complexity low makes the online compensation
scheme suitable for real-time implementations. The
main idea behind this approach relies on a well-
known feature of sliding mode control: the convergence
to the sliding surface implies exponential convergence
of the tracking error to zero.

Moreover, the adoption of si as input to each fuzzy
inference system also facilitates the design of the fuzzy
rules. In this case, the universe of discourse remains
one-dimensional and limited by the width of the bound-
ary layer. Hence, the related fuzzy sets can be either
homogeneously spread over the domain or heuristically
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concentrated in the vicinity of the sliding manifold in
order to allow fine tuning. On this basis, since the
output of each rule is automatically set by equation
(10), the fuzzy inference system can be easily attained.

In addition, it should be highlighted that this pro-
cedure has already been successfully applied to the
dynamic positioning of remotely operated vehicles
(Bessa et al., 2008, 2010), vibration suppression in
smart structures (Bessa et al., 2013), tracking of
unstable periodic orbits in a chaotic pendulum
(Bessa et al., 2014), and depth regulation of a diving
cell (Bessa et al., 2015).

Now, considering that the adopted sliding surface is
a stable manifold (Ashrafiuon and Erwin, 2008), we just
have to prove its attractiveness, in order to ensure
exponential convergence and stability of the proposed
controller (Slotine and Li, 1991; Khalil, 2001). On this
account, the attractiveness of the sliding manifold is
proven in the following theorem.

Theorem 1. Consider the uncertain underactuated mech-
anical system equation (8) subject to Assumptions 1–4.
Then, the controller defined by equations (9), (10), and
(11) ensures the convergence of the tracking errors to the
sliding manifold sð~qÞ ¼ 0.

Proof. Let a positive-definite function V1 be defined as

V1ðtÞ ¼
1

2
s>sþ

Xm
i¼1

1

2’i
�>i �i ð12Þ

where �i ¼ D̂i � D̂
�

i . Thus, the time derivative of V1 is

_V1ðtÞ ¼ s> _sþ
Pm
i¼1

’�1i �>i �i

¼ s>ðaa €qa þ au €qu þ _srÞ þ
Pm
i¼1

’�1i �>i
_�i

¼ s>½aaM
0�1
aa ðf

0
a þ uþ d 0aÞþ

þauM
0�1
uu ðf

0
u �M>auM

�1
aa uþ d 0uÞ þ _sr�þ

þ
Pm
i¼1

’�1i �>i �i

¼ s>½fs þ ds þ _sr þMsu� þ
Pm
i¼1

’�1i �>i �
:

i

Thus, applying the control law equation (11), recall-

ing Remark 3, and noting that _�i ¼
_̂
Di, _V1 becomes

_V1ðtÞ ¼ �s
>½d̂� d̂

�

þ dþ j sgnðsÞ� þ
Pm
i¼1

’�1i �>i
_̂
Di

¼ �s>½dþ j sgnðsÞ�

þ
Pm
i¼1

’�1i �>i ½
_̂
Di � ’i si�iðsiÞ�

Hence, considering that �i � �þ �i þ jd̂ij, and defin-
ing

_̂
Di according to equation (10), one obtains

_V1ðtÞ � ��jjsjj1 ð13Þ

This implies V1ðtÞ � V1ð0Þ and that s as well as
every �i are bounded. From equation (4), it can be
verified that ~q is also bounded. Thereby, Assumption
4 implies that s

:
is also bounded, which in fact also

guarantees the uniform continuity of s (Slotine and
Li, 1991).

Integrating both sides of equation (13) shows that

lim
t!1

Z t

0

�jjsjj1d� � lim
t!1

V1ð0Þ � V1ðtÞ½ � � V1ð0Þ51

Therefore, considering that s is uniformly continu-
ous, it follows from Barbalat’s lemma (Hou et al., 2010)
that s! 0 as t!1, which ensures the convergence of
the tracking errors to the sliding manifold and com-
pletes the proof. h

However, it should be noted that the presence of a
discontinuous term, j sgnðsÞ, in the control law leads to
the well-known chattering effect. Particularly in the
case of mechanical systems, this high-frequency oscilla-
tion in the controlled variable should be avoided,
since it can excite unmodeled vibration modes. In
order to overcome this issue, thin boundary layers in
the neighborhood of the sliding surfaces can be defined
by replacing the sign function by a smooth approxima-
tion of it

u ¼ �M̂
�1

s ½f̂s þ d̂þ _sr þ j satð��1sÞ� ð14Þ

Hereby, � 2 R
m�m is a diagonal matrix with m posi-

tive entries �i, and satð�Þ is the saturation function

satðsi=�iÞ ¼
sgnðsiÞ if jsi=�ij � 1

si=�i if jsi=�ij5 1

�
ð15Þ

Finally, Theorem 2 shows that the smooth intelligent
controller, equation (14), ensures the convergence of
the tracking error to the invariant set defined by the
boundary layers. As discussed by Bessa (2009), this is
a sufficient condition to ensure the convergence of the
tracking error to a bounded region, as well as the sta-
bility of the controlled system.

Theorem 2. Consider the uncertain underactuated
mechanical system equation (8) subject to
Assumptions 1–4. Then, the controller defined by equa-
tions (9), (10), and (14) ensures the convergence of the
tracking errors to the manifold � ¼ f~q 2 R

n
j jsij �

�i, i ¼ 1, . . . ,mg.
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Proof. Let a positive-definite Lyapunov function can-
didate V2 be defined as

V2ðtÞ ¼
1

2
s>� s� ð16Þ

where each component of s�ð~qÞ is a measure of the dis-
tance between si and its related boundary layer, and is
computed as follows

s�ð~qÞ ¼ s� �satð��1sÞ ð17Þ

Noting that _s� ¼ s� ¼ 0 inside �, and _s� ¼ _s outside
of it, then the time derivative of V2 becomes

_V2ðtÞ ¼ s>� _s ¼ s>� ðaa €qa þ au €qu þ _srÞ

¼ s>� ½aaM
0�1
aa ðf

0
a þ uþ d 0aÞþ

þauM
0�1
uu ðf

0
u �M>auM

�1
aa uþ d 0uÞ þ _sr�

¼ s>� ½fs þ ds þ _sr þMsu�

Thereby, applying the control law equation (14),
and noting that satð��1sÞ ¼ sgnðs�Þ outside � and
jd̂i � d̂�i j � jd̂ij, one obtains

_V2ðtÞ ¼ �s
>
� ½d̂� d̂

�

þ dþ jsgnðs�Þ�

� ��jjs�jj1
ð18Þ

This implies V2ðtÞ � V2ð0Þ and that s� is bounded.
From Theorem 1, as well as equations (4) and (17), it
can be verified that ~q remains bounded. Hence, by
noting that _s� is limited by _s, it follows from Theorem
1 that _s� is also bounded, which guarantees its uniform
continuity.

Integrating both sides of equation (18) shows that

lim
t!1

Z t

0

�jjs�jj1d� � lim
t!1

V2ð0Þ � V2ðtÞ½ � � V2ð0Þ51

Thus, since s� is uniformly continuous, Barbalat’s
lemma (Hou et al., 2010) is evoked to show that
s� ! 0 and ~q! � as t!1, which ensures the
boundedness of all closed-loop signals and the asymp-
totical stability of �. h

4. Experimental results

The proposed intelligent controller is now evaluated in
an experimental overhead container crane, available at
the Institute of Mechanics and Ocean Engineering
at Hamburg University of Technology, as shown in
Figure 1. The experimental setup consists of a trolley
with a motion range of 13m, and a 1:6 scale container
with 0:35m� 0:37m� 0:86m that is attached to the

trolley by four cables. The cables are synchronously
actuated, and their length can be varied within 9m.
Both trolley position and cable lengths are measured
by absolute angular encoders, and can be directly actu-
ated. The swing angle, on the other hand, is an unac-
tuated variable, and is estimated from the measured
forces on the cables, using an unscented Kalman filter
(Kreuzer et al., 2012).

In order to develop the control law, a simple math-
ematical model of the overhead container crane, is
considered

Mþm m sin � ml cos �

m sin � m 0

ml cos � 0 ml2

2
64

3
75

€x

€l

€�

2
64

3
75

¼

m _�ð _�l sin � � 2 _l cos �Þ

mðl _�
2
þ g cos �Þ

�ml ð2 _l _� þ g sin �Þ

2
64

3
75þ

ux

ul

0

2
64

3
75

ð19Þ

where ux and ul are, respectively, the control forces
acting on the trolley and the cables, x is the trolley
position, l stands for the length of the cables, � repre-
sents the swing angle, M is the mass of the trolley, and
m is the container mass. Thus, the vectors with actuated
and unactuated variables are qa ¼ ½x l �> and qu ¼ ½��,
respectively.

It should be noted, however, that no friction, damp-
ing force or actuator dynamics are incorporated into
the mathematical model described in equation (19).
Unlike the inertial effects considered in the model, fric-
tion and damping are not so easy to be accurately rep-
resented. Also, the dynamics of powertrain would
require experimental research in order to obtain the
proper model and its parameters. Although certainly

Figure 1. Experimental crane at the Institute of Mechanics and

Ocean Engineering.
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present in the experimental setup, these effects are not
taken into account in the development of the control
law to demonstrate the robustness of the proposed
scheme against unmodeled dynamics.

Both trolley and container masses are also con-
sidered as uncertain. Their nominal values are actually
well-known (270 kg and 12.9 kg, respectively), but
uncertainties of 	70% over the container mass and
	40% over the mass of the trolley are deliberately
assumed, in order to show that the controller is also
robust to large parametric variations.

Concerning the assumptions made in the develop-
ment of the controller (see Section 3), it is worth
noting that they are rigorously met by the testbench
conditions. Assumption 2 is valid for the considered
system, as can be verified by direct inspection of equa-
tion (19) and the aforementioned values. Assumption 2
is reasonable, since the related disturbances include
uncertainties with respect to the inertia matrix and fric-
tion issues. All these effects are bounded due to either
physical limitations or finite energy supply. Assumption
3 is always required for the design of state feedback
controllers and is also valid here, since all states are
either measurable or observable. Lastly, Assumption
4 is plausible, since the state trajectory can be arbitrar-
ily chosen to be four times continuously differentiable,
which is also used here. Moreover, even in a hypothet-
ical case, where the desired trajectory is not continu-
ously differentiable, it is well known that a first-order
low pass filter could be used to define qd (Farrell and
Polycarpou, 2006).

The efficacy and robustness of the intelligent control-
ler is then evaluated for both stabilization and tracking
problems. It should be highlighted that the experimen-
tal container crane must be controlled by means of ref-
erence velocities, and not forces, due to the
requirements of the actuators. Therefore, the computed
control efforts (ux and ul) are converted to the required
velocity values (vx and vl) at each time step through the
integration of equation (8a), with the unknown disturb-
ance set to zero: d 0a ¼ 0.

4.1. Stabilization of the swing angle

A series of 47 experiments has been conducted to inves-
tigate the influence of the controller parameters on the
stabilization of the unactuated variable, namely, the
swing angle, considering both the here developed intel-
ligent sliding mode controller (ISMC) as well as the
conventional scheme (SMC) from Section 2. After
each trial, the container swing was damped completely
and the unscented Kalman filter was initialized, in
order to ensure equal initial conditions and to guaran-
tee that the swing angle is correctly estimated. In all
experiments, the container is set to swing by imposing

for 3 seconds a constant velocity vx ¼ �0:5 m/s to the
trolley. Then, after a waiting period, the controller is
turned on at t¼ 10 seconds with the aim to reduce the
swing amplitude.

For simplification, the control parameters �i, di, and
’i are chosen to be equal for both components ux and
ul. It is also worth noting that the ISMC can be easily
converted to the conventional SMC by setting the vec-
tors with the output of the fuzzy rules and the adapta-
tion rates to zero, that is, D̂i ¼ 0 and ’i ¼ 0. An
overview of the control parameters considered in each
experiment is summarized in Table 1. Here, it is also
important to note that ’1,2 ¼ 0 refer to SMC while
’1,2 6¼ 0 refer to the ISMC.

The first two experiments are related to the conven-
tional sliding mode approach, that is, with sgnðsÞ in the
control law. The aim of these first trials is to show the
occurrence of chattering in this context. The masses of
both container and trolley are considered perfectly
known, and the influence of two different values for
�1,2 is evaluated, �1,2 ¼ 1 and �1,2 ¼ 2. The other
chosen parameters are: � ¼ 0:01,

aa ¼
1 0

0 1

� �
, au ¼

1:5

0

� �
,

ka ¼
0:5 0

0 0:5

� �
, ku ¼

�5

0

� �

Figure 2 shows the results obtained in experiment #2
using SMC with sgnðsÞ. Since the results related to
experiment #1 are closely similar to those from experi-
ment #2, they are not detailed here. The overall control

Table 1. Experiments and corresponding parameters.

Experiment

number �1,2 �1,2 ’1,2 M m

1 – 1 0 270 kg 12.9 kg

2 – 2 0 270 kg 12.9 kg

3a,b,c,d,e 1 1 0 2 ½170 370� kg 2 ½3:9 21:9� kg

4a,b,c,d,e 1 2 0 2 ½170 370� kg 2 ½3:9 21:9� kg

5a,b,c,d,e 5 1 0 2 ½170 370� kg 2 ½3:9 21:9� kg

6a,b,c,d,e 5 2 0 2 ½170 370� kg 2 ½3:9 21:9� kg

7a,b,c,d,e 1 1 50 2 ½170 370� kg 2 ½3:9 21:9� kg

8a,b,c,d,e 1 2 50 2 ½170 370� kg 2 ½3:9 21:9� kg

9a,b,c,d,e 5 1 50 2 ½170 370� kg 2 ½3:9 21:9� kg

10a,b,c,d,e 5 2 50 2 ½170 370� kg 2 ½3:9 21:9� kg

11 5 1 0 370 kg 3.9 kg

12 5 1 25 370 kg 3.9 kg

13 5 1 50 370 kg 3.9 kg

14 5 1 75 370 kg 3.9 kg

15 5 1 100 370 kg 3.9 kg
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performance for experiment #1 is notwithstanding por-
trayed together with all other experiments further on in
the text.

As observed in Figure 2, even considering that the
masses are exactly known, the adoption of a discon-
tinuous term in the control law leads to the undesirable
chattering phenomenon, that actually should be
avoided in mechanical systems. Since the ideal relay
cannot be obtained in practice, the stabilization of
the swing angle is compromised. As a matter of fact,
due to the persistent excitation, as shown in Figures
2(a) and 2(b), the container never comes to rest (see
Figures 2(c) and 2(d)). The response related to the
absence of a control action is also presented in Figure
2(d), as a reference to the efficacy of the controller.

Now, the adoption of a boundary layer is assessed.
Hence, experiments #3a to #6e are related to the con-
ventional but smooth sliding mode controller, that is,
’1,2 ¼ 0, as before, but the boundary layer parameters
are either �1,2 ¼ 1 or �1,2 ¼ 5. The subscripts a, . . . , e
stand for the sets {M, m} of considered values for both
trolley and container masses, respectively, #Ea ¼
f270, 12:9g kg, #Eb ¼ f270, 3:9g kg, #Ec ¼ f270, 21:9g
kg, #Ed ¼ f170, 12:9g kg, and #Ee ¼ f370, 12:9g kg, for
E ¼ 3, . . . , 6. The other control parameters are retained.

In respect of the intelligent sliding mode controller,
the robustness against parameter variations is also
investigated. First, in experiments #7a to #10e, the
adaptation rate is kept constant, ’1,2 ¼ 50, and
the masses are varied as before, following the
same subscript scheme. The influence of �1,2 and �1,2
is also assessed in this set of experiments (see Table 1).

Concerning the fuzzy inference system, triangular (in
the middle) and trapezoidal (at the edges) membership
functions are adopted, with the central values defined
as Ci ¼ f��i=4, � �i=20, � �i=40, 0,�i=40,�i=20,�i=4g.
It is also important to emphasize, that in every trial the
vectors of adjustable parameters are initialized with
zero values, D̂i ¼ 0, and updated at each time step
according to the adaptation law, equation (10).

In experiments #11 to #15, different values for the
adaptation rate are tested: ’1,2 ¼ 0 (conventional
SMC), ’1,2 ¼ 25, ’1,2 ¼ 50, ’1,2 ¼ 75, and ’1,2 ¼ 100.
The values of M, m, �1,2 and �1,2 are retained as con-
stants in these last trials.

Since the results obtained in experiments #5a (SMC)
and #9a (ISMC) are representative for all trials from #3
to #15, they and are shown in Figure 3.

The improved performance of the intelligent
approach can be easily ascertained in Figure 3. Due
to the ability of the ISMC to quickly recognize and
compensate for unmodeled dynamics (friction or damp-
ing forces, for example), the proposed scheme can react
in a much faster and proper way to the initial disturb-
ance (see Figure 3(a)), which leads to a rapid reduction
in the swing angle as well (see Figure 3(b)).

Indeed, the enhanced performance of the proposed
ISMC over the conventional SMC holds for all experi-
ments. This assertion can be easily confirmed in
Figure 4, where the total control action

R
jvxjdt is

plotted against the sum of absolute values of the
swing angle over a fixed time interval,

R
j�jdt.

As observed in Figure 4, the results obtained with the
ISMC and the SMC are clustered in two different

(a) (b)

(c) (d)

Figure 2. Stabilization of the swing angle using a discontinuous control law and �1,2 ¼ 2. (a) Chattering in the control action,

(b) Velocity assigned to the trolley, (c) Related switching variable and (d) Related swing angle.
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groups, which in fact demonstrate the robustness to
parametric variations of both schemes. However,
while the total control action over the time related to
the intelligent and the conventional approaches are com-
parable, the sum of the resulting swing angle obtained
with the SMC is in general three times greater. Actually,
the proposed intelligent controller shows an improved
performance, even when compared with the discontinu-
ous SMC (experiments #1 and #2), that is, swinging is
damped out faster with comparable control effort. As
mentioned before, besides the pernicious chattering phe-
nomenon, the stabilization of the swing angle is also
slightly compromised with the discontinuous control
law, since the ideal relay cannot be obtained in practice.
It should be emphasized that the enhanced performance
of the ISMC is due to the adopted adaptive fuzzy com-
pensation scheme, that recognizes the unmodeled
dynamic effects and compensates for them.

It should be also noted that all control parameters
have a physical interpretation, which in fact is a very
important feature during the tuning phase. For exam-
ple, � defines the convergence time to the sliding sur-
face, k is related to the actuator’s bandwidth, ’
determines how fast the fuzzy compensator will recog-
nize the uncertainties, and � is related to the trade-off
between chattering and residual tracking error. This
specific knowledge cannot be underestimated and,

Figure 4. Comparison of the control performance for all stabilization experiments.

(a)

(b)

Figure 3. Comparison of the results obtained with both

conventional and intelligent schemes. (a) Velocity assigned to

the trolley and (b) Related swing angle.
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in fact, plays a key role in the choice of parameters, as
well as in the uniformity of the resulting controller.

4.2. Trajectory tracking

In order to evaluate the tracking performance, the flat-
ness-based model inversion solution presented in Fliess
et al. (1995) is used to obtain the desired states, qd,
related to the reference trajectory p. Therefore,

a circular path is defined in the inertial frame KI by
its initial p0 and center c points, as shown in Figure 5.

Thus, the desired trajectory is described through a
parametric equation

pðrÞ ¼ cþ �SIP

cosðr�Þ
sinðr�Þ

0

2
4

3
5

where r 2 ½0, rf� is the adopted parameter,
� ¼ jjp0 � cjj2 is the radius of the circular path, and
SIP is the rotation matrix from the rotating reference
frame KP to KI.

Finally, a timing law is still required to define the
trajectory. For the evaluation of the flat solution, the
timing law must not only be four times continuously
differentiable with respect to time but also has to
ensure the required boundary conditions (Blajer and
Kolodziejczyk, 2004)

rðtÞ ¼ ½126
t

tf

� �5

� 420
t

tf

� �6

þ 540
t

tf

� �7

þ

� 315
t

tf

� �8

þ 70
t

tf

� �9

�rf

(a) (b)

(c)

Figure 6. Tracking of a circle path. (a) Tracking with the intelligent sliding mode controller, (b) With �1,2¼ 1 and �1,2¼ 2 and

(c) With �1,2¼ 5 and �1,2¼ 1.

Figure 5. Coordinate systems and parameters for a circular

path.
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where tf is the time required to complete the trajectory.
First, a full circular path is chosen as desired trajec-

tory for the container, with rf ¼ 2	�, p0 ¼ ½11 0 3:5�>

m, c ¼ ½11 0 4:3�> m, and tf¼ 15 seconds. The other
control parameters are defined according to the previ-
ous experiments: either #4a or #5a, for the SMC, and

either #8a or #9a, for the ISMC. Figures 6 and 7 show
the obtained results.

By comparing the results obtained with the intelli-
gent (ISMC) and conventional (SMC) controllers, as
shown in Figures 6(b) and 6(c), the superior perform-
ance of the proposed scheme can be clearly observed.
While the SMC is not able to track the prescribed tra-
jectory, it can be seen that with both sets of parameters,
the intelligent sliding mode controller could perform
the task with a small associated error. The overlaid
video frames presented in Figure 6(a) endorse the effi-
cacy of the ISMC too.

It is also worth noting that the intelligent approach
is less affected by variations of the chosen parameters,
which as a matter of fact makes the proposed controller
easier to calibrate and more robust. With respect to the
ISMC, as observed in Figures 6(b) and 6(c), the trajec-
tory tracking is visually similar for both sets of param-
eters adopted, which is obviously not the case with the
SMC. Likewise, only the control actions related to the
ISMC (see Figure 7) are not significantly changed as the
control parameters are varied.

Lastly, a semicircle trajectory is also evaluated as
desired trajectory, in order to illustrate that, when com-
bined with an appropriate obstacle avoidance algo-
rithm, the proposed intelligent controller can be safely
used in automated cargo handling operations. In this
case, the following parameters are taken into account
for the semicircle trajectory: rf ¼ 	�, p0 ¼ ½9:65 0 4:5�>

m, c ¼ ½10:6 0 4:5�> m, and tf¼ 9 seconds. The obtained
results are presented in Figures 8 and 9.

Considering a box with its centroid described by c
(see Figure 8(a)), the ISMC is then employed to ensure
that the container detours around the obstacle. Since
the conventional sliding mode controller did not pre-
sent satisfactory results for the tracking of the full

(a) (b) (c)

Figure 8. Tracking of a semicircle around an obstacle. (a) Tracking with the intelligent sliding mode controller, (b) With �1,2¼ 1 and

�1,2¼ 2 and (c) With �1,2¼ 5 and �1,2¼ 1.

(a)

(b)

Figure 7. Control actions for the tracking of a circle path.

(a) Control actions for the trolley and (b) Control actions for the

cables.
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circle, for safety reasons, the box is omitted when the
SMC was used.

Through the comparative analyses shown in
Figures 8 and 9, the improved performance of the pro-
posed intelligent sliding mode controller over the con-
ventional counterpart can be once again confirmed.
The tracking error is slightly larger than with the full
circular path, since in this case the trajectory is more
aggressive. The obtained results ratify the robustness of
the proposed compensation scheme against modeling
inaccuracies and suggest that a proper association
with visual servoing (Asl et al., 2014; Al-Kaff et al.,
2018) may also allow the incorporation of an obstacle
avoidance feature.

5. Concluding remarks

The present paper addresses the control of multiple-
input–multiple-output underactuated mechanical sys-
tems subject to modeling imprecisions and external
disturbances. By combining the sliding mode technique
with an adaptive fuzzy compensation scheme, a new
intelligent sliding mode controller is proposed. The
adoption of the switching variable instead of all state
variables reduces the number of fuzzy rules and simpli-
fies the controller design process. The convergence
properties of the proposed control law are analytically

proven using Lyapunov stability theory and Barbalat’s
lemma. In order to illustrate the feasibility of the intel-
ligent controller, and to evaluate its efficacy, the pro-
posed scheme is applied to an experimental container
crane. The obtained results confirm the stronger
improved performance of this approach for both sta-
bilization and tracking problems. Also, the experiments
show that the intelligent sliding mode controller can
successfully deal with underactuated systems, even
when a high level of uncertainty is involved.
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Ortega R, Spong M, Gómez-Estern F, et al. (2002)

Stabilization of a class of underactuated mechanical

1534 Journal of Vibration and Control 25(9)

https://doi.org/10.1063/2.1204304
https://core.ac.uk/download/pdf/4395501.pdf


systems via interconnection and damping assignment.
IEEE Transactions on Automatic Control 47(8):
1218–1233.

Otto S (2016) Nonlinear Trajectory Control of a Gantry Crane.
Master’s thesis, Institute of Mechanics and Ocean
Engineering, Hamburg University of Technology.

Otto S and Seifried R (2018) Real-time trajectory control of

an overhead crane using servo-constraints. Multibody
System Dynamics 42(1): 1–17.

Park MS, Chwa D and Eom M (2014) Adaptive sliding-mode

antisway control of uncertain overhead cranes with high-
speed hoisting motion. IEEE Transactions on Fuzzy
Systems 22(5): 1262–1271.

Park MS, Chwa D and Hong SK (2008) Antisway tracking
control of overhead cranes with system uncertainty and
actuator nonlinearity using an adaptive fuzzy sliding-

mode control. IEEE Transactions on Industrial
Electronics 55(11): 3972–3984.

Pervozvanski AA and Freidovich LB (1999) Robust stabiliza-
tion of robotic manipulators by PID controllers. Dynamics

and Control 9(3): 203–222.
Pucci D, Romano F and Nori F (2015) Collocated adaptive

control of underactuated mechanical systems. IEEE

Transactions on Robotics 31(6): 1527–1536.
Qian DW, Liu XJ and Yi JQ (2009) Robust sliding mode

control for a class of underactuated systems with mis-

matched uncertainties. Proceedings of the Institution of
Mechanical Engineers, Part I: Journal of Systems and
Control Engineering 223(6): 785–795.

Reyhanoglu M, van der Schaft A, Mcclamroch NH, et al.

(1999) Dynamics and control of a class of underactuated
mechanical systems. IEEE Transactions on Automatic
Control 44(9): 1663–1671.

Rudra S, Barai RK and Maitra M (2014) Nonlinear state
feedback controller design for underactuated mechanical
system: A modified block backstepping approach. ISA

Transactions 53(2): 317–326.
Ryalat M and Laila DS (2016) A simplified IDA-PBC design

for underactuated mechanical systems with applications.

European Journal of Control 27: 1–16.
Sankaranarayanan V and Mahindrakar AD (2009) Control

of a class of underactuated mechanical systems using slid-
ing modes. IEEE Transactions on Robotics 25(2): 459–467.

Seifried R (2012a) Integrated mechanical and control design
of underactuated multibody systems. Nonlinear Dynamics
67(2): 1539–1557.

Seifried R (2012b) Two approaches for feedforward control
and optimal design of underactuated multibody systems.
Multibody System Dynamics 27(1): 75–93.

Seifried R (2013) Dynamics of Underactuated Multibody
Systems: Modeling, Control and Optimal Design. Cham,
Switzerland: Springer.

Shtessel Y, Edwards C, Fridman L, et al. (2014) Sliding Mode

Control and Observation. New York: Springer.

Singhose W, Seering W and Singer N (1994) Residual vibra-

tion reduction using vector diagrams to generate shaped

inputs. ASME Journal of Mechanical Design 116(2):

654–659.
Slotine JJE and Li W (1991) Applied Nonlinear Control.

Upper Saddle River, NJ: Prentice Hall.
Slotine JJ and Weiping L (1988) Adaptive manipulator con-

trol: A case study. IEEE Transactions on Automatic

Control 33(11): 995–1003.

Spong MW (1994) Partial feedback linearization of underac-

tuated mechanical systems. In: IROS ’94 – Proceedings of

the IEEE/RSJ/GI International Conference on Intelligent

Robots and Systems, Munich, Germany, 12–16

September 1994. Piscataway, NJ: Institute of Electrical

and Electronics Engineers, pp.314–321.

Spong MW, Hutchinson S and Vidyasagar M (2005) Robot

Modeling and Control. John Wiley & Sons, Inc.

Utkin VI (1992) Sliding Modes in Control and Optimization.

Berlin: Springer.

Wu TS, Karkoub M, Wang H, et al. (2017) Robust tracking

control of MIMO underactuated nonlinear systems with

dead-zone band and delayed uncertainty using an adaptive

fuzzy control. IEEE Transactions on Fuzzy Systems 25(4):

905–918.

Wu TS, Karkoub M, Yu WS, et al. (2016) Anti-sway tracking

control of tower cranes with delayed uncertainty using a

robust adaptive fuzzy control. Fuzzy Sets and Systems 290:

118–137.
Xu L and Hu Q (2013) Output-feedback stabilisation control

for a class of under-actuated mechanical systems. IET

Control Theory & Applications 7(7): 985–996.
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