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Depth control of remotely operated underwater vehicles using an adaptive
fuzzy sliding mode controller
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Abstract

Sliding mode control, due to its robustness against modelling imprecisions and external disturbances, has been successfully employed to the
dynamic positioning of remotely operated underwater vehicles. In order to improve the performance of the complete system, the discontinuity in
the control law must be smoothed out to avoid the undesirable chattering effects. The adoption of a properly designed thin boundary layer has
proven effective in completely eliminating chattering, however, leading to an inferior tracking performance. This paper describes the development
of a depth control system for remotely operated underwater vehicles. The adopted approach is based on the sliding mode control strategy and
enhanced by an adaptive fuzzy algorithm for uncertainty/disturbance compensation. The stability and convergence properties of the closed-loop
system are analytically proved using Lyapunov stability theory and Barbalat’s lemma. Numerical results are presented in order to demonstrate the
control system performance.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Due to the enormous technological improvements obtained
in the last decades it is possible to use robotic vehicles
for underwater exploration. These vehicles, often called
ROV (Remotely Operated underwater Vehicle), have been
substituting for divers in the accomplishment of tasks that may
result in risks to human life. In this respect, ROVs have been
used thoroughly in the research of subsea phenomena and in the
assembly, inspection and repair of offshore structures. During
the execution of a certain task with the robotic vehicle, the
operator needs to monitor and control a number of parameters.
If some of these parameters, as for instance the position and
attitude of the vehicle, could be controlled automatically, the
teleoperation of the ROV can be enormously facilitated.
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A growing number of papers dedicated to the dynamic
positioning of unmanned underwater vehicles confirms the
necessity of the development of a controller, that could
deal with the inherent nonlinear system dynamics, imprecise
hydrodynamic coefficients, and external disturbances. It has
already been shown [1,2] that, in the case of underwater
vehicles, the traditional control methodologies are not the most
suitable choice and cannot guarantee the required tracking
performance. On the other hand, sliding mode control, due to its
robustness to parameter uncertainty and external disturbance,
has proven to be a very attractive approach to cope with
this problem [3–8]. But a known drawback of conventional
sliding mode controllers is the chattering effect. To overcome
the undesired effects of the control chattering, Slotine [9]
proposed the adoption of a thin boundary layer neighbouring
the switching surface, by replacing the sign function by a
saturation function. This substitution can minimize or, when
desired, even completely eliminate chattering, but turns perfect
tracking into a tracking with guaranteed precision problem,
which actually means that a steady-state error will always
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remain. In order to enhance the tracking performance inside
the boundary layer, some adaptive strategy should be used for
uncertainty/disturbance compensation.

Because of the possibility to express human experience in an
algorithmic manner, fuzzy logic has been largely employed in
the last decades to both control and identification of dynamic
systems. In spite of the simplicity of this heuristic approach, in
some situations a more rigorous mathematical treatment of the
problem is required. Recently, much effort [10–13] has been
made to combine fuzzy logic with sliding mode methodology.

In this paper, an adaptive fuzzy sliding mode controller
is proposed to regulate the vertical displacement of remotely
operated underwater vehicles. The adopted depth regulator is
primarily based on the sliding mode control methodology, but
a stable adaptive fuzzy inference system was embedded in the
boundary layer to cope with the uncertainties and disturbances
that can arise. Using Lyapunov stability theory and Barbalat’s
lemma, the stability and convergence properties of the closed-
loop systems were analytically proved. Some numerical results
are also presented in order to demonstrate the control system
performance.

2. Dynamic model

An appropriate model to describe the underwater vehicle’s
dynamic behaviour must include the rigid-body dynamics of
the vehicle’s body, the dynamics of the tether cable and a
representation of the surrounding fluid dynamics. In this way,
such a model must be composed of a system of ordinary
differential equations, to represent rigid-body dynamics, and
partial differential equations to represent both tether and fluid
dynamics (Navier–Stokes equations).

To overcome the computational problem of solving a
system with this degree of complexity, in the majority
of publications [14–17,8] a lumped-parameters approach is
employed to approximate vehicle’s dynamic behaviour.

In the range of velocities in which remotely operated
underwater vehicles typically operate, never exceeding 2 m/s,
the hydrodynamic forces (Fh) can be approximated using the
Morison equation [18]:

Fh = CD
1
2
ρAv|v| + CMρ∇v̇ + ρ∇v̇w (1)

where v and v̇ are, respectively, the relative velocity and the
relative acceleration between rigid-body and fluid, v̇w is the
acceleration of underwater currents, A is a reference area, ρ
is the fluid density, ∇ is the fluid’s displaced volume, CD and
CM are coefficients that must be experimentally obtained.

The last term of Eq. (1) is the so-called Froude–Kryloff
force and will not be considered in this work due the fact, that
at normal working depths, the acceleration of the underwater
currents is negligible. In this way, the coefficient CMρ∇ of
the second term will be called hydrodynamic added mass.
The first term represents the nonlinear hydrodynamic quadratic
damping. Experimental tests [19] show that the Morison
equation describes with sufficient accuracy the hydrodynamic
effects due to the relative motion between rigid-bodies and
water.
Fig. 1. Underwater vehicle with both inertial and body-fixed reference frames.

The equations of motion for underwater vehicles can be
presented with respect to an inertial reference frame or to
a body-fixed reference frame, Fig. 1. For control purposes,
the dynamic model of underwater vehicles are commonly
expressed with respect to the inertial reference frame by the
position/attitude vector x = [x, y, z, α, β, γ ]

T.
In the particular case of remotely operated vehicles, the

distance between buoyancy and gravity centers is usually large
enough to keep the roll (α) and pitch (β) angles small, i.e. α ≈ 0
and β ≈ 0. Besides the self-stabilizing property, this design
characteristic allows the vertical motion (heave) of the vehicle
to be considered decoupled from the motion in the horizontal
plane. So, with this in mind and considering Morison equation,
the vertical motion along z-axis can be described by

mz̈ + cż|ż| + d = u (2)

where u is the control input (thrust force), d the disturbance
caused by external forces, c =

1
2 CDρA the coefficient of the

hydrodynamic quadratic damping and m represents vehicle’s
mass plus the hydrodynamic added mass.

With respect to the dynamic model, the following physically
motivated assumptions can be made:

Assumption 1. The parameter m(t) is time-varying and
unknown but positive and bounded, i.e. 0 < mmin ≤ m(t) ≤

mmax.

Assumption 2. The parameter c(t) is time-varying and
unknown but bounded, i.e. cmin ≤ c(t) ≤ cmax.

Assumption 3. The disturbance d(t) is time-varying and
unknown but bounded by a known function of z, ż and t ,
i.e. |d(t)| ≤ δ(t, z, ż).

3. Depth control

Let S(t) be a sliding surface defined in the state space by the
equation s(z̃, ˙̃z) = 0, with the function s : R2

→ R satisfying

s(z̃, ˙̃z) = ˙̃z + λz̃ (3)

where z̃ = z − zd is the tracking error, ˙̃z the time derivative of
z̃, zd the desired trajectory and λ a strictly positive constant.

Regarding the development of the control law the following
assumptions must be made:
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Assumption 4. The states z and ż are available.

Assumption 5. The desired trajectory zd is C1. Furthermore
zd , żd and z̈d are available and with known bounds.

Now, let the problem of controlling the vertical motion of a
remotely operated underwater vehicle, governed by Eq. (2), be
treated in Filippov’s way [20], defining a control law composed
by an equivalent control û = ĉż|ż| + d̂ + m̂(z̈d − λ ˙̃z) and a
discontinuous term −K sgn(s):

u = ĉż|ż| + d̂ + m̂(z̈d − λ ˙̃z)− K sgn(s) (4)

where m̂, ĉ and d̂ are estimates of m, c and d , respectively, K
is the control gain and sgn(·) is defined as

sgn(x) =

−1 if x < 0
0 if x = 0
1 if x > 0

(5)

Based on Assumptions 1–2, the estimates m̂ and ĉ can be
properly chosen such that |ĉ − c| ≤ ζ and µ−1

≤ m̂/m ≤ µ,
where µ =

√
mmax/mmin.

Therefore, if we choose the control gain according to

K ≥ m̂µη + ζ ż2
+ δ + |d̂| + m̂(µ− 1)|z̈d − λ ˙̃z| (6)

where η is a strictly positive constant related to the reaching
time, it can be easily verified that (4) is sufficient to impose the
sliding condition

1
2

d
dt

s2
≤ −η|s| (7)

and, consequently, the finite time convergence to the sliding
surface S(t).

In order to obtain a good approximation to the disturbance
d(t), the estimate d̂ will be computed directly by an adaptive
fuzzy algorithm.

The adopted fuzzy inference system was the zero order
TSK (Takagi–Sugeno–Kang), whose rules can be stated in a
linguistic manner as follows:

If s is Sr then d̂r = D̂r ; r = 1, 2, · · · , N

where Sr are fuzzy sets, whose membership functions could be
properly chosen, and D̂r is the output value of each one of the
N fuzzy rules.

Considering that each rule defines a numerical value as
output D̂r , the final output d̂ can be computed by a weighted
average:

d̂(s) =

N∑
r=1

wr · d̂r

N∑
r=1

wr

(8)

or, similarly,

d̂(s) = D̂
T
9(s) (9)
where, D̂ = [D̂1, D̂2, . . . , D̂N ]
T is the vector contain-

ing the attributed values D̂r to each rule r , 9(s) =

[ψ1(s), ψ2(s), . . . , ψN (s)]T is a vector with components
ψr (s) = wr/

∑N
r=1wr andwr is the firing strength of each rule.

To ensure the best possible estimate d̂(s) to the disturbance
d, the vector of adjustable parameters can be automatically
updated by the following adaptation law:

˙̂D = −ϕs9(s) (10)

where ϕ is a strictly positive constant related to the adaptation
rate.

It’s important to emphasize that the chosen adaptation law,
Eq. (10), must not only provide a good approximation to
disturbance d but also assure the convergence of the state
variables to the sliding surface S(t), for the purpose of
trajectory tracking.

Theorem 1. Let the underwater vehicle be represented by Eq.
(2). Then, subject to Assumptions 1–5, the controller defined by
(4) and (6), (9) and (10) ensures the convergence of the states
to the sliding surface S(t) and the desired trajectory tracking.

Proof. Let a Lyapunov function candidate V be defined as

V (t) =
1
2

s2
+

1
2mϕ

1T1 (11)

where 1 = D̂ − D̂
∗

and D̂
∗

is the optimal parameter vector,
associated with the optimal estimate d̂∗(s).

Thus, the time derivative of V is

V̇ (t) = sṡ + (ϕm)−11T1̇

= (z̈ − z̈d + λ ˙̃z)s + (ϕm)−11T1̇

=

[
(u − d − cż|ż|)m−1

− z̈d + λ ˙̃z
]

s + (ϕm)−11T1̇

Defining the minimum approximation error as ε = d̂∗(s)−d

and noting that 1̇ =
˙̂D, then

V̇ (t) = −

[
K sgn(s)− ε − (d̂ − d̂∗)− (ĉ − c)ż|ż|

− (m̂ − m)(z̈d + λ ˙̃z)
]

m−1s + (ϕm)−11T ˙̂D

= −

[
K sgn(s)− ε − 1T9(s)− (ĉ − c)ż|ż|

− (m̂ − m)(z̈d + λ ˙̃z)
]

m−1s + (ϕm)−11T ˙̂D

= −

[
K sgn(s)− (ĉ − c)ż|ż| − (m̂ − m)

(z̈d + λ ˙̃z)− ε
]

m−1s + (ϕm)−11T
[
˙̂D + ϕs9(s)

]
By applying the adaptation law, Eq. (10), to ˙̂D, V̇ (t)

becomes:

V̇ (t) = −

[
K sgn(s)− (ĉ − c)ż|ż|

− (m̂ − m)(z̈d + λ ˙̃z)− ε
]

m−1s (12)

Furthermore, considering Assumptions 1–3, defining K
according to (6) and verifying that |ε| = |d̂∗

−d| ≤ |d̂∗
|+|d| ≤

|d̂| + δ, we get
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Fig. 2. Block diagram of the proposed depth control system.
V̇ (t) ≤ −η|s| (13)

which implies V (t) ≤ V (0) and that s and 1 are bounded.
Considering Assumption 5 and Eq. (3), it can be easily verified
that ṡ is also bounded.

Integrating both sides of (13) shows that

lim
t→∞

∫ t

0
η|s| dτ ≤ lim

t→∞
[V (0)− V (t)] ≤ V (0) < ∞.

Therefore, it follows from Barbalat’s lemma that s → 0 as
t → ∞, which ensures the convergence of the states to the
sliding surface S(t) and the desired trajectory tracking. �

However, the presence of a discontinuous term in the control
law leads to the well-known chattering effect. In order to avoid
these undesirable high-frequency oscillations of the controlled
variable, the sign function can be replaced by a saturation
function [9], defined as:

sat(x) =

{
sgn(x) if |x | ≥ 1
x if |x | < 1

(14)

This substitution smoothes out the control discontinuity and
introduces a thin boundary layer, Sφ(t), in the neighbourhood
of the switching surface

Sφ =

{
(z̃, ˙̃z) ∈ R2

||s(z̃, ˙̃z)| ≤ φ
}

where φ is a strictly positive constant that represents the
boundary layer thickness.

Thus, the resulting control law can be stated as follows:

u = ĉż|ż| + d̂ + m̂(z̈d − λ ˙̃z)− K sat
(

s

φ

)
. (15)

The block diagram of the proposed depth control system,
with the adaptive fuzzy algorithm for uncertainty/disturbance
compensation, is shown in Fig. 2.

The proof of the stability of the yielding closed-loop system
relies on the following lemma:

Lemma 1. Let the boundary layer be defined as Sφ = {(z̃, ˙̃z) ∈

R2
||s(z̃, ˙̃z)| ≤ φ}, then for all trajectories starting inside Sφ(t),

states will converge on a closed region Φ = {(z̃, ˙̃z) ∈ R2
||z̃| ≤

λ−1φ and |˙̃z| ≤ 2φ}.

Proof. Considering that |s(z̃, ˙̃z)| ≤ φ may be rewritten as
−φ ≤ s(z̃, ˙̃z) ≤ φ and from the definition of s(z̃, ˙̃z), Eq. (3),
we get:

−φ ≤ ˙̃z + λz̃ ≤ φ (16)
Thus, multiplying (16) by eλt and integrating between 0
and t :

−φeλt
≤ ( ˙̃z + λz̃)eλt

≤ φeλt

−φeλt
≤

d
dt
(z̃eλt ) ≤ φeλt

−φ

∫ t

0
eλτdτ ≤

∫ t

0

d
dτ
(z̃eλτ )dτ ≤ φ

∫ t

0
eλτdτ

−
φ

λ
eλt

+
φ

λ
≤ z̃(t)eλt

− z̃(0) ≤
φ

λ
eλt

−
φ

λ

−
φ

λ
+

(
φ

λ
+ z̃(0)

)
e−λt

≤ z̃(t) ≤
φ

λ
−

(
φ

λ
− z̃(0)

)
e−λt .

Furthermore, for t → ∞:

−
φ

λ
≤ z̃(t) ≤

φ

λ
. (17)

By applying (17) to (16), it can be easily verified that

−2φ ≤ ˙̃z(t) ≤ 2φ (18)

Therefore, it follows from (17) and (18) that states will
converge to Φ = {(z̃, ˙̃z) ∈ R2

||z̃| ≤ λ−1φ and |˙̃z| ≤ 2φ}. �

Finally, the stability and convergence properties of the
closed-loop system are established in Theorem 2.

Theorem 2. Let the underwater vehicle be represented by Eq.
(2). Then, subject to Assumptions 1–5, the controller defined by
(6) and (15), (9) and (10) ensures the finite-time convergence of
the states to the boundary layer and the global stability of the
closed-loop system.

Proof. Let a Lyapunov function candidate V be defined as

V (t) =
1
2

s2
φ (19)

where sφ is a measure of the distance of the current state to the
boundary layer, and can be computed as follows:

sφ = s − φsat
(

s

φ

)
. (20)

Noting that sφ = 0 inside the boundary layer and ṡφ = ṡ, we
get V̇ (t) = 0 inside Sφ(t), and outside

V̇ (t) = sφ ṡφ = sφ ṡ = (z̈ − z̈d + λ ˙̃z)sφ

=

[
(u − d − cż|ż|)m−1

− z̈d + λ ˙̃z
]

sφ .

It can be easily verified that outside the boundary layer the
control law (15) takes the following form:
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Fig. 3. Adopted fuzzy membership functions.
u = ĉż|ż| + d̂ + m̂(z̈d − λ ˙̃z)− K sgn(sφ)

Thus, the time derivative V̇ can be written as

V̇ (t) = −

[
K sgn(sφ)− (ĉ − c)ż|ż| − (m̂ − m)(z̈d + λ ˙̃z)

− (d̂ − d)
]

m−1sφ .

So, considering Assumptions 1–3 and defining K according
to (6), V̇ (t) becomes

V̇ (t) ≤ −η|sφ | (21)

which implies V (t) ≤ V (0) and that sφ is bounded. From
the definition of sφ , Eq. (20), it can be easily verified that s
is bounded. Considering Assumption 5 and Eq. (3), it can be
concluded that ṡ is also bounded.

The finite-time convergence of the states to the boundary
layer can be shown by integrating both sides of (21) over the
interval 0 ≤ t ≤ treach, where treach is the time required to hit
Sφ(t). In this way, noting that |sφ(t = treach)| = 0, we get:

treach ≤
|sφ(t = 0)|

η
(22)

which guarantees the attractiveness of the boundary layer. Thus,
it follows from Lemma 1 that, for t ≥ 0, states will converges
to Φ = {(z̃, ˙̃z) ∈ R2

||z̃| ≤ λ−1φ and |˙̃z| ≤ 2φ}. This ensures
the global stability of the closed-loop system and completes the
proof. �

4. Simulation results

The simulation studies were performed with an implemen-
tation in C, with sampling rates of 500 Hz for control sys-
tem and 1 kHz for dynamic model. The differential equa-
tions of the dynamic model were numerically solved with a
fourth order Runge–Kutta method. Concerning the fuzzy sys-
tem, triangular and trapezoidal membership functions were
adopted for Sr , with the central values defined as C =

{−5.0; −1.0; −0.5; 0.0; 0.5; 1.0; 5.0} × 10−3 (see Fig. 3). It is
also important to emphasize, that the vector of adjustable pa-
rameters was initialized with zero values, D̂ = 0, and updated
at each iteration step according to the adaptation law, Eq. (10).

In order to evaluate the control system performance, three
different numerical simulations were performed. The obtained
results were presented from Figs. 4 to 7.
In the first case, it was considered that the model parameters,
m and c, were perfectly known. Regarding controller and model
parameters, the following values were chosen m̂ = m = 50 kg,
ĉ = c = 250 kg/m, µ = 1 and ζ = 0. The disturbance
force was chosen to vary in the range of ±5 N, as will be
seen further in Fig. 4(d) and 5(d). The other used parameters
were δ = 5, λ = 0.6, η = 0.1, φ = 0.01 and ϕ = 150.
Fig. 4 gives the corresponding results for the tracking of zd =

0.5[1 − cos(0.1π t)], considering that the initial state coincides
with the initial desired state, z̃(0) = [z̃(0), ˙̃z(0)]T

= 0.
As observed in Fig. 4, even in the presence of external

disturbances, the adaptive fuzzy sliding mode controller
(AFSMC) is able to provide trajectory tracking with a small
associated error and no chattering at all. It can be also verified
that the proposed control law provides a smaller tracking error
when compared with the conventional sliding mode controller
(SMC), Fig. 4(c). The improved performance of AFSMC over
SMC is due to its ability to recognize and compensate the
external disturbances, Fig. 5(d). The AFSMC can be easily
converted to the classical SMC by setting the adaptation rate
to zero, ϕ = 0.

In the second simulation study, the parameters for the
controller were chosen based on the assumption that exact
values are not known but with a maximal uncertainty of ±10%
over previous adopted values, m̂ = 49.75 kg, ĉ = 250 kg/m,
µ = 1.1 and ζ = 25. For the dynamic model, it was selected
m = 55 kg and c = 275 kg/m. The other parameters, as well
as the disturbance force and the desired trajectory, were defined
as before. Fig. 5 shows the obtained results.

Despite the external disturbance forces and uncertainties
with respect to model parameters, the AFSMC allows the
underwater robotic vehicle to track the desired trajectory
with a small tracking error (see Fig. 5). As before, the
undesirable chattering effect was not observed, Fig. 5(b).
Through the comparative analysis showed in Fig. 5(c), the
improved performance of the AFSMC over the uncompensated
counterpart can be clearly ascertained.

In the last simulation the initial state and initial desired state
are not equal, z̃(0) = [0.6, 0.0]

T. The controller and model
parameters, the disturbance force and the desired trajectory
were defined as before. Fig. 6 shows the corresponding results.
Only the first 60 seconds are displayed in order to emphasize
the time required to reach the desired trajectory.

The phase portrait associated with the last simulation is
shown in Fig. 7(a). For comparison purposes, the phase portrait
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(a) Vertical displacement z. (b) Control action u.

(c) Tracking error z̃. (d) Disturbance d and estimate d̂.

Fig. 4. Tracking with known parameters and z̃(0) = 0.

(a) Vertical displacement z. (b) Control action u.

(c) Tracking error z̃. (d) Disturbance d and estimate d̂.

Fig. 5. Tracking with uncertain parameters and z̃(0) = 0.
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(a) Vertical displacement z. (b) Control variable u.

Fig. 6. Tracking with uncertain parameters and z̃(0) = [0.6, 0.0]
T.

(a) With the proposed AFSMC. (b) With the conventional SMC.

Fig. 7. Phase portrait of the trajectory tracking.
obtained with the conventional sliding modes is also presented,
Fig. 7(b). Note that in both situations the steady-state tracking
error remains on the convergence region Φ, but the improved
performance of the AFSMC can be easily observed.

5. Concluding remarks

In this paper, an adaptive fuzzy sliding mode controller
was proposed to deal with the depth regulation of underwater
robotic vehicles. To enhance the tracking performance
inside the boundary layer, the adopted strategy embedded
an adaptive fuzzy algorithm within the sliding mode
controller for uncertainty/disturbance compensation. The
stability and convergence properties of the closed-loop systems
were analytically proved using Lyapunov stability theory
and Barbalat’s lemma. Through numerical simulations, the
improved performance over the conventional sliding mode
controller was demonstrated.
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