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a b s t r a c t

Sliding mode control is a very attractive control scheme because of its robustness against both structured
and unstructured uncertainties as well as external disturbances. In this way, it has been widely employed
for the dynamic positioning of remotely operated underwater vehicles. Nevertheless, in such situations
the discontinuities in the control law must be smoothed out to avoid the undesirable chattering effects.
The adoption of properly designed boundary layers has proven effective in completely eliminating
chattering, however, leading to an inferior tracking performance. This work describes the development
of a dynamic positioning system for remotely operated underwater vehicles. The adopted approach is
primarily based on the sliding mode control strategy and enhanced by an adaptive fuzzy algorithm
for uncertainty/disturbance compensation. Using the Lyapunov stability theory and Barbalat’s lemma,
the boundedness and convergence properties of the closed-loop signals are analytically proven. The
performance of the proposed control scheme is also evaluated by means of numerical simulations.

© 2009 Elsevier B.V. All rights reserved.
1. Introduction

The control system is one of the most important elements of
an underwater robotic vehicle, and its characteristics (advantages
and disadvantages) play an essential role when one has to choose
a vehicle for a specific mission. Unfortunately, the problem of
designing accurate positioning systems for underwater robotic
vehicles still challengesmany engineers and researchers interested
in this particular branch of engineering science. A growing number
of papers dedicated to the position and orientation control of such
vehicles confirm the necessity of the development of a controller,
that could deal with the inherent nonlinear system dynamics,
imprecise hydrodynamic coefficients, and external disturbances.
It has already been shown [1,2] that, in the case of underwa-

ter vehicles, the traditional controlmethodologies are not themost
suitable choice and cannot guarantee the required tracking perfor-
mance. On the other hand, sliding mode control, due to its robust-
ness against modeling inaccuracies and external disturbance, has
proven to be a very attractive approach to cope with these prob-
lems [3–12]. But a well known drawback of conventional sliding
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mode controllers is the chattering effect. To overcome the unde-
sired effects of the control chattering, Slotine [13] proposed the
adoption of a thin boundary layer neighboring the switching sur-
face, by replacing the sign function by a saturation function. This
substitution canminimize or, when desired, even completely elim-
inate chattering, but turns perfect tracking into a trackingwith guar-
anteed precision problem, which in fact means that a steady-state
error will always remain. In order to enhance the tracking perfor-
mance inside the boundary layer, some adaptive strategy should
be used for uncertainty/disturbance compensation.
Due to the possibility of expressing human experience in an

algorithmic manner, fuzzy logic has been largely employed in the
past few decades to both control and identification of dynamical
systems. In spite of the simplicity of this heuristic approach, in
some situations a more rigorous mathematical treatment of the
problem is required. Recently, much effort has been made to
combine fuzzy logic with nonlinear control methodology. In [14]
a globally stable adaptive fuzzy controller was proposed using the
Lyapunov stability theory to develop the adaptive law. Combining
fuzzy logicwith slidingmode control, Palm [15] used the switching
variable s to define a fuzzy boundary layer. Some improvements
to this control scheme appeared in [16,17]. Wong et al. [18]
proposed a fuzzy logic controller which combines a sliding mode
controller and a proportional plus integral controller. A sliding
mode controller that incorporates a fuzzy tuning technique was
analyzed in [19]. By defining a generalized error transformation as

http://www.elsevier.com/locate/robot
http://www.elsevier.com/locate/robot
mailto:wmbessa@ufrnet.br
mailto:max@mecanica.ufrj.br
mailto:kreuzer@tu-harburg.de
http://dx.doi.org/10.1016/j.robot.2009.09.001


W.M. Bessa et al. / Robotics and Autonomous Systems 58 (2010) 16–26 17
a complement to the conventional switching variable, Liang and
Su [20] developed a stable fuzzy sliding mode control scheme.
Cheng andChien [21] proposed an adaptive slidingmode controller
based on T–S fuzzy models and Wu and Juang [22] showed that
fuzzy sliding surfaces can be established by solving a set of linear
matrix inequalities.
A robust and very attractive approach was proposed in [23].

Yoo and Ham [23] used fuzzy inference systems to approximate
the unknown system dynamics within the slidingmode controller.
Some improvements to this methodology are suggested in [24–28]
and an application to an underwater vehicle is presented in [5]. A
drawback of this approach is the adoption of the state variables
in the premise of the fuzzy rules. For higher-order systems the
number of fuzzy sets and fuzzy rules becomes incredibly large,
which compromises the applicability of this technique.
In order to reduce the number of fuzzy sets and rules and con-

sequently simplify the design process, Bessa and Barrêto [29] pro-
posed the adoption of the switching variable s, instead of the state
variables, in the premise of the fuzzy rules. This control strategy
has already been successfully applied to the depth regulation of
remotely operated underwater vehicles [3] and to chaos control in
a nonlinear pendulum [30].
In this work, the control scheme presented in [29] is employed

for the dynamic positioning of underwater vehicles with four con-
trollable degrees of freedom. The adoption of a reduced order
mathematical model and the development of the control system
in a decentralized fashion, neglecting cross-coupling terms, is dis-
cussed. Rigorous proofs of the boundedness and convergence prop-
erties of the closed-loop signals by means of Lyapunov stability
theory and Barbalat’s lemma are presented. This analytical result
proves that the convergence region of the tracking error vector is
even smaller than that shown in [3]. Numerical results are also pro-
vided to confirm the control system efficacy.

2. Vehicle dynamics model

A reasonable model to describe the underwater vehicle’s dy-
namical behavior must include the rigid-body dynamics of the
vehicle’s body and a representation of the surrounding fluid dy-
namics. Such a model must be composed of a system of ordinary
differential equations, to represent rigid-body dynamics, and par-
tial differential equations to represent both tether and fluid dy-
namics.
In order to overcome the computational problem of solving a

system with this degree of complexity, in the majority of publica-
tions [3,31–35,12] a lumped parameters approach is employed to
approximate vehicle’s dynamical behavior.
The equations of motion for underwater vehicles can be pre-

sented with respect to an inertial reference frame or with respect
to a body-fixed reference frame, Fig. 1. On this basis, the equations
of motion for underwater vehicles can be expressed, with respect
to the body-fixed reference frame, in the following vectorial form:

Mν̇ + k(ν)+ h(ν)+ g(x)+ p = τ (1)

where ν = [υx, υy, υz, ωx, ωy, ωz] is the vector of linear and an-
gular velocities in the body-fixed reference frame, x = [x, y, z,
α, β, γ ] represents the position and orientation with respect to
the inertial reference frame,M is the inertia matrix, which accou-
nts not only for the rigid-body inertia but also for the so-called
hydrodynamic added inertia, k(ν) is the vector of generalized
Coriolis and centrifugal forces, h(ν) represents the hydrodynamic
quadratic damping, g(x) is the vector of generalized restoring
forces (gravity andbuoyancy),p stands for occasional disturbances,
and τ is the vector of control forces and moments.
It should be noted that in the case of remotely operated under-

water vehicles (ROVs), the metacentric height is sufficiently large
Fig. 1. Underwater vehicle with both inertial and body-fixed reference frames.

to provide the self-stabilization of roll (α) and pitch (β) angles. This
particular constructive aspect also allows the order of the dynamic
model to be reduced to four degrees of freedom, x = [x, y, z, γ ],
and the vertical motion (heave) to be decoupled from the motion
in the horizontal plane. This simplification can be found in the ma-
jority of works presented in the specialized literature [32,36,8,34,
35,37,38,12]. Thus, the positioning system of a ROV can be divided
in two different parts: Depth control (concerning variable z), and
control in the horizontal plane (variables x, y and γ ).
Another important issue in the case of ROVs is the disturbance

force caused by the umbilical (or tether cable). The umbilical can be
treated as a continuum, discretizedwith the finite elementmethod
or modeled as multibody system [39,37]. However, the adoption
of any of these approaches requires a computational effort that
would be prohibitive for on-line estimation of the control action. A
common way to surmount this limitation is to consider the forces
and moments exerted by the tether as random, and incorporate
them into the vector p.
On this basis, considering that the restoring forces can be

passively compensated [35], the most relevant hydrodynamic
forces andmoments acting on ROVs, aswell as the effects produced
by the thruster system, are discussed in the following subsections.

2.1. Hydrodynamic forces

Remotely operated underwater vehicles typically operate with
velocities never exceeding 2m/s. Consequently, the hydrodynamic
forces (Fh) can be approximated using theMorison equation [40]:

Fh =
1
2
CDAρv|v| + CMρ∇v̇ + ρ∇v̇w (2)

where v and v̇ are, respectively, the relative velocity and the rel-
ative acceleration between rigid-body and fluid, v̇w is the acceler-
ation of underwater currents, A is a reference area, ρ is the fluid
density, ∇ is the fluid’s displaced volume, CD and CM are coeffi-
cients that must be obtained experimentally.
The last term of Eq. (2) is the so-called Froude–Kriloff force and

will not be considered in this work due the fact, that at normal
working depths, the acceleration of the underwater currents is
negligible. In this way, the coefficient CMρ∇ of the second term
will be called hydrodynamic addedmass. The first term represents
the nonlinear hydrodynamic quadratic damping. Experimental
tests [41] show that Morison equation describes with sufficient
accuracy the hydrodynamic effects due to the relative motion
between rigid-bodies and water.

2.1.1. Quadratic damping
The effects of the hydrodynamic damping h(ν) over the vehicle,

due not only to the translational but also to rotational motions, can
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be described in the body-fixed reference frame by:

h(ν) =
1
2
ρ[CDxυx|υx|, CDyυy|υy|, CDzυz |υz |, CDγ ωz |ωz |] (3)

where the parameters CDx , CDy , CDz and CDγ depend on the geome-
try of the vehicle and should be obtained experimentally in a wind
tunnel [37], or on-line estimatedwith adaptive algorithms in awa-
ter tank [42].

2.1.2. Added inertia
Considering that an underwater vehicle typically operates at

low speeds, the added inertiamatrix,MA ∈ R4×4, could be assumed
as diagonally dominant and described as follows:

MA = diag{CMxρ∇, CMyρ∇, CMzρ∇, CMγ ρ∇}. (4)

Aswith the computation of the hydrodynamic damping, the coeffi-
cients CMx , CMy , CMz and CMγ should be determined experimentally.
The matrixMA must be combined with the rigid-body inertia ma-
trix in order to obtain the matrixM of Eq. (1).

2.2. Thruster forces

The steady-state axial thrust Fp produced by marine thrusters
is presented in the literature as proportional to the square of
propeller’s angular velocityΩ [40]. This quadratic relationship can
be conveniently represented by

Fp = CTΩ|Ω| (5)

where CT is a function of the advance ratio and depends on
constructive characteristics of each thruster.
Furthermore, the effect on the vehicle of the force produced

by everyone of the N thrusters can be described in body-fixed
reference frame by

τ = BFp (6)

where Fp ∈ RN is a vector containing the force produced by each
thruster and B ∈ R4×N is a matrix which represents the distribu-
tion of the thrust forces on the vehicle.
Dynamic and more sophisticated thruster models can be found

in [43,44].

3. Dynamic positioning system

The dynamic positioning of underwater robotic vehicles is es-
sentially amultivariable control problem. Nevertheless, as demon-
strated by Slotine [45], the variable structure control methodology
allows different controllers to be separately designed for each
degree of freedom (DOF). Over the past decades, decentralized
control strategies have been successfully applied to the dynamic
positioning of underwater vehicles [5,6,33,35,38,12].
Considering that the control law for each degree of freedom

can be easily designed with respect to the inertial reference frame,
Eq. (1) should be rewritten in this coordinate system.
Remembering that

ẋ = J(x)ν (7)

where J(x) is the Jacobian transformation matrix, it can be directly
implied that

ν = J−1(x)ẋ (8)

and

ν̇ = J̇−1ẋ+ J−1ẍ. (9)

Therefore, the equations of motion of an underwater vehicle,
with respect to the inertial reference frame, becomes
M̄ẍ+ k̄+ h̄+ p̄ = τ̄ (10)

where M̄ = J−TMJ−1, k̄ = J−Tk + J−TMJ̇−1ẋ, h̄ = J−Th, p̄ = J−Tp
and τ̄ = J−Tτ.
In order to develop the control law with a decentralized

approach, Eq. (10) can be rewritten as follows:

ẍi = m̄−1i (τ̄i − k̄i − h̄i − p̄i); i = 1, 2, 3, 4, (11)

where xi, τ̄i, k̄i, h̄i and p̄i are the components of x = [x, y, z, γ ],
τ̄, k̄, h̄ and p̄, respectively. Concerning m̄i, it represents the main
diagonal terms of J−TMJ−1. The off-diagonal terms of J−TMJ−1 are
incorporated in the vector p̄.
Now, let Si(t) be a sliding surface defined in the state space of

each degree of freedom (xi) by the equation si(x̃i, ˙̃xi) = 0, with
si : R2 → R satisfying

si(x̃i, ˙̃xi) = ˙̃xi + λix̃i (12)

where x̃i = xi−xdi is the tracking error associated to each DOF, ˙̃xi is
the time derivative of x̃i, xdi is the correspondent desired trajectory
and λi are strictly positive constants.
Thus, given the main characteristics of the system to be con-

trolled, the dynamic positioning is done assuming a sliding mode
based approach, defining a control law composed by an equivalent
control ˆ̄τ i = ˆ̄ki+ ˆ̄hi+ ˆ̄pi+ ˆ̄mi

(
ẍdi − λi ˙̃xi

)
and a discontinuous term

−Ki sgn(si):

τ̄i =
ˆ̄ki + ˆ̄hi + ˆ̄pi + ˆ̄mi

(
ẍdi − λi ˙̃xi

)
− Ki sgn(si) (13)

where ˆ̄mi, ˆ̄ki, ˆ̄hi and ˆ̄pi stands for estimates of m̄i, k̄i, h̄i and p̄i, re-
spectively, and sgn(·) is defined as:

sgn(si) =

{
−1 if si < 0
0 if si = 0
1 if si > 0.

(14)

Now, given the required control force τ̄ and the thruster’s arrange-
ment on the vehicle, the force that should be produced by every
thruster can be determined by

Fp = BT(BBT)−1J−1τ̄

where BT(BBT)−1 is the pseudo-inverse of matrix B.
In this way, considering the required thrust forces and Eq. (5),

the related angular velocity could be easily estimated for each
propeller.
It should be emphasized that the lumped parameters approach,

adopted to describe the hydrodynamic effects (quadratic damping
and added inertia), represents a simplification, and hence only es-
timates of the actual phenomena are available. Due to the presence
of the term J−TMJ̇−1ẋ, the vector k̄ cannot be exactly known.
On this basis, the following assumptions must be made:

Assumption 1. The states xi and ẋi are available.

Assumption 2. The desired trajectories xdi and ẋdi are once
differentiable in time. Furthermore xdi , ẋdi and ẍdi are available and
with known bounds.

Assumption 3. The parameters m̄i are unknown but positive and
bounded, i.e., 0 < m̄imin ≤ m̄i ≤ m̄imax.

Assumption 4. The components of k̄ and h̄ are unknown but
bounded, i.e., |ˆ̄ki − k̄i| ≤ κi and | ˆ̄hi − h̄i| ≤ ζi.

Assumption 5. The components of p̄ are unknown but bounded,
i.e., |p̄i| ≤ δi.
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Based on Assumption 3 and considering that the estimates
ˆ̄mi could be chosen according to the geometric mean ˆ̄mi =√
m̄imaxm̄imin, the bounds of m̄i may be expressed as µ−1i ≤

ˆ̄mi/m̄i ≤ µi, where µi =
√
m̄imax/m̄imin.

Therefore, if we choose each control gain according to

Ki ≥ ˆ̄miµiηi + ϑi + |ˆ̄pi| + ˆ̄mi(µi − 1)|ẍdi − λi ˙̃xi| (15)

where ϑi = κi + ζi + δi and each ηi is a strictly positive constant
related to the reaching time, it can be easily verified that (13) is
sufficient to impose the sliding condition

1
2
d
dt
s2i ≤ −ηi|si| (16)

and, consequently, the finite time convergence to the sliding
surface Si(t).
In order to obtain a good approximation to p̄, the estimates ˆ̄pi

will be computed directly by an adaptive fuzzy algorithm.
The adopted fuzzy inference system is the zero-order TSK

(Takagi–Sugeno–Kang), whose rules can be stated in a linguistic
manner as follows:

If si is Sir then ˆ̄pir = P̂ir
where Sir are fuzzy sets, whose membership functions could be
properly chosen, and P̂ir is the output value of each fuzzy rule r ,
with r = 1, 2, . . . , R.
Considering that each rule defines a numerical value as output

P̂ir , the final output ˆ̄pi can be computed by a weighted average:

ˆ̄pi(si) =

R∑
r=1
wir · P̂ir

R∑
r=1
wir

(17)

or, similarly,

ˆ̄pi(si) = P̂
T
i9i(si) (18)

where, P̂i = [P̂i1 , P̂i2 , . . . , P̂iR ] is the vector containing the attri-
buted values P̂ir to each rule r , 9i(si) = [ψi1 , ψi2 , . . . , ψiR ] is a
vector with components ψir (si) = wir /

∑R
r=1wir and wir is the

firing strength of each rule.
In order to obtain the most suitable values for ˆ̄pi(si), the vectors

of adjustable parameters will be automatically updated by the
following adaptation law:

˙̂Pi = −ϕisi9i(si) (19)

where each ϕi is a strictly positive constant related to the adap-
tation rate.
It is important to emphasize that the chosen adaptation law,

Eq. (19), must not only provide a good approximation to ˆ̄pi but
also assure the convergence of the tracking variables to the sliding
surface Si(t), for the purpose of trajectory tracking. In this way, in
order to evaluate the convergence properties of the closed-loop
system, let a positive-definite function Vi be defined as

Vi(t) =
1
2
s2i +

1

2µi ˆ̄miϕi
1Ti1i (20)

where 1i = P̂i − P̂
∗

i and P̂
∗

i is the optimal parameter vector,
associated to the optimal estimate ˆ̄p

∗

i . Thus, the time derivative of
Vi is

V̇i(t) = siṡi + (µi ˆ̄miϕi)−11Ti ∆̇i

= (ẍi − ẍdi + λi ˙̃xi)si + (µi ˆ̄miϕi)
−11Ti ∆̇i

= [m̄−1i (τ̄i − k̄i − h̄i − p̄i)− ẍdi + λi ˙̃xi]si + (µi ˆ̄miϕi)
−11Ti ∆̇i
Defining a minimum approximation error as εi = ˆ̄p
∗

i − p̄i and

noting that ∆̇i =
˙̂Pi and µ−1i ≤ ˆ̄mi/m̄i ≤ µi, then:

V̇i(t) ≤ −[Ki sgn(si)− ( ˆ̄ki − k̄i)− ( ˆ̄hi − h̄i)− ( ˆ̄pi − ˆ̄p
∗

i )− εi

+ ˆ̄mi(µi − 1)(ẍdi − λi ˙̃xi)](µi ˆ̄mi)
−1si + (µi ˆ̄miϕi)−11Ti Ṗi

= −[Ki sgn(si)− ( ˆ̄ki − k̄i)− ( ˆ̄hi − h̄i)−1Ti9i(si)− εi

+ ˆ̄mi(µi − 1)(ẍdi − λi ˙̃xi)](µi ˆ̄mi)
−1si + (µi ˆ̄miϕi)−11Ti Ṗi

= −[Ki sgn(si)− ( ˆ̄ki − k̄i)− ( ˆ̄hi − h̄i)− εi + ˆ̄mi(µi − 1)(ẍdi
− λi ˙̃xi)](µi ˆ̄mi)−1si + (µi ˆ̄miϕi)−11Ti [Ṗi + ϕisi9i(si)].

By applying the adaptation law, Eq. (19), to ˙̂Pi, V̇i(t) becomes:

V̇i(t) ≤ −[Ki sgn(si)− ( ˆ̄ki − k̄i)− ( ˆ̄hi − h̄i)− εi
+ ˆ̄mi(µi − 1)(ẍdi − λi ˙̃xi)](µi ˆ̄mi)

−1si.
Furthermore, considering Assumptions 1–5, defining Ki accord-

ing to (15) and verifying that |εi| = |ˆ̄p
∗

i − p̄i| ≤ |ˆ̄pi− p̄i| ≤ |ˆ̄pi|+ δi,
one has
V̇i(t) ≤ −ηi|si| (21)
which implies Vi(t) ≤ Vi(0) and that si and 1i are bounded.
Considering Assumption 2 and Eq. (12), it can be easily verified that
ṡi is also bounded.
Integrating both sides of (21) shows that

lim
t→∞

∫ t

0
ηi|si|dθ ≤ lim

t→∞
[Vi(0)− Vi(t)] ≤ Vi(0) <∞.

Since the absolute value function is uniformly continuous, it
follows from Barbalat’s lemma [46] that si → 0 as t →∞, which
ensures the convergence of the states to the sliding surface Si(t)
and the desired trajectory tracking.
In spite of the demonstrated properties of the controller, the

presence of a discontinuous term in the control law leads to the
well known chattering phenomenon. To overcome the undesirable
chattering effects, a thin boundary layer, Sφi , in the neighborhood
of each switching surface can be adopted [13]:

Sφi =
{
(x̃i, ˙̃xi) ∈ R2 | |si(x̃i, ˙̃xi)| ≤ φi

}
where each φi is a strictly positive constant that represents the
boundary layer thickness.
The boundary layer is achieved by replacing the sign function

by a continuous interpolation inside Sφi . It should be noted that this
smooth approximation must behave exactly like the sign function
outside the boundary layer. There are several options to smooth
out the ideal relay but the most common choice is the saturation
function:

sat(si/φi) =
{
sgn(si) if |si/φi| ≥ 1
si/φi if |si/φi| < 1.

In this way, to avoid chattering, a smooth version of Eq. (13) is
defined:

τ̄i =
ˆ̄ki + ˆ̄hi + ˆ̄pi + ˆ̄mi

(
ẍdi − λi ˙̃xi

)
− Ki sat(si/φi). (22)

In order to establish the attractiveness and invariant properties of
the defined boundary layer, let a new Lyapunov function candidate
Wi be defined as

Wi(t) =
1
2
s2φi (23)

where sφi is a measure of the distance of the current state to the
boundary layer, and can be computed as follows
sφi = si − φi sat(si/φi). (24)
Noting that sφi = 0 inside the boundary layer and ṡφi = ṡi, one

has Ẇi(t) = 0 inside Sφi , and outside



20 W.M. Bessa et al. / Robotics and Autonomous Systems 58 (2010) 16–26
2φ

Φ

.
x~

Sφ

i

i

i

i

−2φi

−φi /λ i

i /λ iφ

x~

i

Fig. 2. Convergence region for the tracking error.
Ẇi(t) = sφi ṡφi = sφi ṡi = (ẍi − ẍdi + λi ˙̃xi)sφi
= [m̄−1i (τ̄i − k̄i − h̄i − p̄i)− ẍdi + λi ˙̃xi]sφi .

It can be easily verified that outside the boundary layer the
control law (22) takes the following form:

τ̄i =
ˆ̄ki + ˆ̄hi + ˆ̄pi + ˆ̄mi

(
ẍdi − λi ˙̃xi

)
− Ki sgn(sφi).

Thus, the time derivative Ẇi can be written as

Ẇi(t) = −[Ki sgn(sφi)− (
ˆ̄ki − k̄i)− ( ˆ̄hi − h̄i)− ˆ̄pi + p̄i

− ( ˆ̄mi − m̄i)(ẍdi − λi ˙̃xi)]m̄
−1
i sφi .

So, considering Assumptions 1–5 and defining Ki according to (15),
Ẇi(t) becomes:

Ẇi(t) ≤ −ηi|sφi | (25)

which implies Wi(t) ≤ Wi(0) and that sφi is bounded. From the
definition of sφi , Eq. (24), it can be easily verified that si is bounded.
Considering Assumption 2 and Eq. (12), it can be concluded that ṡi
is also bounded.
10
–3

x s

wi r

–0.5–1.0–5.0 5.01.00.5
i

Fig. 3. Adopted fuzzy membership functions.
(a) Vertical displacement z. (b) Control action τ̄z .

(c) Tracking error z̃. (d) Disturbance pz and estimate p̂z .

Fig. 4. Depth control with known parameters and z̃(0) = 0.
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(a) Vertical displacement z. (b) Control action τ̄z .

(c) Tracking error z̃. (d) Disturbance pz and estimate p̂z .

Fig. 5. Depth control with uncertain parameters and z̃(0) = 0.
(a) Vertical displacement z. (b) Control variable u.

Fig. 6. Tracking with uncertain parameters and z̃(0) = [0.6, 0.0].
(a) With the proposed AFSMC. (b) With the conventional SMC.

Fig. 7. Phase portrait of the trajectory tracking with z̃(0) = [0.6, 0.0].
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(a) State variable x. (b) Thrust force τ̄x .

(c) State variable y. (d) Thrust force τ̄y .

(e) State variable γ . (f) Thrust force τ̄γ .

Fig. 8. Dynamic positioning in the plane XY .
The finite time convergence of the states to the boundary layer
can be shown by integrating both sides of (25) over the interval
0 ≤ t ≤ treachi , where treachi is the time required to hit Sφi . In this
way, noting that |sφi(treachi)| = 0, one has:

treachi ≤
|sφi(0)|
ηi

(26)

which guarantees the convergence of the tracking error vector to
the boundary layer in a time interval smaller than |sφi(0)|/ηi.
Nevertheless, it should be emphasized that the substitution

of the discontinuous term by a smooth approximation inside the
boundary layer turns the perfect tracking into a tracking with
guaranteed precision problem,which actuallymeans that a steady-
state error will always remain. However, it can be easily verified
that, once inside the boundary layer, the tracking error vector will
exponentially converge to a closed regionΦi.
Considering that |si(x̃i, ˙̃xi)| ≤ φi may be rewritten as −φi ≤

si(x̃i, ˙̃xi) ≤ φi and from the definition of si(x̃i, ˙̃xi), Eq. (12), one has:

− φi ≤ ˙̃xi + λix̃i ≤ φi. (27)
Thus, multiplying (27) by eλit and integrating between 0 and t:

−φieλit ≤ (˙̃xi + λix̃i)eλit ≤ φieλit

−φieλit ≤
d
dt
(x̃ieλit) ≤ φieλit

−φi

∫ t

0
eλiθdθ ≤

∫ t

0

d
dτ
(x̃ieλiθ )dθ ≤ φi

∫ t

0
eλiθdθ

−
φi

λi
eλit +

φi

λi
≤ x̃i(t)eλit − x̃i(0) ≤

φi

λi
eλit −

φi

λi

−
φi

λi
−

[
|x̃i(0)| +

φi

λi

]
e−λit ≤ x̃i(t) ≤

φi

λi
+

[
|x̃i(0)| +

φi

λi

]
e−λit .

Furthermore, for t →∞:

−
φi

λi
≤ x̃i ≤

φi

λi
. (28)

By applying (28) to (27), it can be easily verified that:

− 2φi ≤ ˙̃xi ≤ 2φi. (29)



W.M. Bessa et al. / Robotics and Autonomous Systems 58 (2010) 16–26 23
(a) Thruster 1. (b) Thruster 2.

(c) Thruster 3. (d) Thruster 4.

Fig. 9. Propeller’s angular velocity related to the dynamic positioning in the plane XY .
In this way, the tracking error will be confined within the limits
|x̃i| ≤ φi/λi and |˙̃xi| ≤ 2φi. However, these bounds define a box
that is not completely inside the boundary layer, as can be seen in
Fig. 2.
Considering the demonstrated attractiveness and invariant pro-

perties of Sφi , the region of convergence can be stated as the
intersection of the boundary layer and the box defined by the pre-
ceding bounds. Therefore, it follows that the tracking error vector
will exponentially converge to a closed region Φi = {(x̃i, ˙̃xi) ∈ R2

| |si(x̃i, ˙̃xi)| ≤ φi and |x̃i| ≤ λ−1i φi and |˙̃xi| ≤ 2φi}. This result
proves that the convergence region of the tracking error vector is
even smaller than that shown in [3] and is in perfect accordance
with the bounds proposed by Bessa [47] for nth-order nonlinear
systems subject to smooth sliding mode controllers.

4. Simulation results

The numerical simulations were carried out considering the
fourth-order Runge–Kutta method and sampling rates of 500 Hz
for the control system and 1 kHz for the dynamic model. The
chosen parameters for the ROV model were M = diag{80 kg,
80 kg, 100 kg, 8 kg m2} and h = [125 υx|υx|N, 175υy|υy|N, 250υz
|υz | N, 12.5ωz |ωz | N m]. Considering that electrically actuated
bladed thrusters are the most common choices to equip under-
water vehicles and that the propeller’s angular velocity of these
thrusters is limited, due to the maximal current/voltage admitted
by the thruster’s DC motors, a saturation limited angular velocity,
with Ωmax = 420 rad/s and CT = 4.5 × 10−5, was adopted for
Eq. (5). The disturbance forces and moments were chosen to vary
in the range of±5 N and±0.5 N m, respectively.
Concerning the fuzzy system, the same triangular and trape-

zoidal membership functions, with the central values defined as
Ci = {−5.0;−1.0;−0.5; 0.0; 0.5; 1.0; 5.0} × 10−3 (see Fig. 3),
were adopted for each DOF. The vectors of adjustable parameters
Fig. 10. Dynamic positioning in R3 .

were initialized to zero, D̂i = 0, and automatically updated at each
iteration step according to the adaptation law, Eq. (19).
To evaluate the control system performance, five different nu-

merical simulations were performed. The obtained results are pre-
sented in Figs. 4–11.
In the first case, itwas assumed that themodel parameterswere

perfectly known, i.e., the estimates of M and h were defined as
M̂ = M and ĥ = h in the control law. In order to simplify the design
process, the other controller parameters were chosen identical for
all degrees of freedom, φi = 0.05, ηi = 0.1, λi = 0.6, µi = 1.1,
ϑi = 10 and ϕi = 500. Fig. 4 gives the corresponding results for
the tracking of zd = 0.5[1− cos(0.1π t)].
As observed in Fig. 4, even in the presence of external distur-

bances, the adaptive fuzzy sliding mode controller (AFSMC) is ca-
pable to provide the trajectory tracking with a small associated
error and no chattering at all. It can be also verified that the
proposed control law provides a smaller tracking error when
compared with the conventional sliding mode controller (SMC),
Fig. 4(c). The improved performance of AFSMC over SMC is due to
its ability to recognize and compensate the external disturbances,
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(a) State variable x. (b) State variable y.

(c) State variable z. (d) State variable γ .

Fig. 11. State variables in the time domain related to the dynamic positioning in R3 .
Fig. 4(d). The AFSMC can be easily converted to the classical SMC
by setting the adaptation rate to zero, ϕi = 0.
It should be also noted that, since ˆ̄pi is based on the universal

approximation feature of a fuzzy inference system [48], and not
just an ordinary adaptive parameter, it represents disturbances
and uncertainties as functions of si. On this basis, it provides faster
accommodation to disturbance variations than would be obtained
using a simple adaptive parameter.
In the next four simulation studies, the parameters for the con-

troller were chosen based on the assumption that exact values are
not known but with a maximal uncertainty of±10% over previous
adopted values, M̂ = diag{79.5 kg, 79.5 kg, 99.5 kg, 7.9 kgm2} and
ĥ = [112.5υx|υx| N, 157.5υy|υy|N, 225υz |υz |N, 11.3ωz |ωz |N m].
The other parameters, as well as the disturbance force, were de-
fined as before. Fig. 5 shows the results obtained for the tracking of
zd = 0.5[1− cos(0.1π t)].
Despite the external disturbance forces and uncertainties with

respect tomodel parameters, the AFSMC allows the remotely oper-
ated underwater vehicle to track the desired trajectorywith a small
tracking error (see Fig. 5). As before, the undesirable chattering ef-
fect was not observed, Fig. 5(b). Through the comparative analysis
showed in Fig. 5(c), the improved performance of the AFSMC over
the uncompensated counterpart can be clearly ascertained.
In the third simulation the initial state and initial desired state

are not equal, z̃(0) = [0.6, 0.0]. Figs. 6 and 7 show the correspond-
ing results. The phase portrait related to the tracking obtainedwith
the proposed control scheme is shown in Fig. 7(a). For comparison
purposes, the phase portrait obtained with the conventional slid-
ing modes is also presented, Fig. 7(b). Note that in both situations
the steady-state tracking error remains on the convergence region
Φ , but the improved performance of the AFSMC can be easily ob-
served.
Now, considering the motion in the XY plane, the underwater

vehicle was intended to move from its initial position/orientation
at rest, x0 = [0, 0, 0, 0], to the desired final position/orientation
xd = [2.5, 2, 0, π/2]. Once this final position/orientation is
reached, it should stay there indefinitely, besides the disturbance
forces. The obtained results are presented in Figs. 8 and 9.
Fig. 8 shows the obtained response in the time domain. These

results confirm that the proposed control strategy was able to reg-
ulate and stabilize the dynamical behavior of the underwater vehi-
cle in the horizontal plane. As observed in Fig. 8(b), (d) and (f), the
adaptive fuzzy sliding mode controller was also efficient in min-
imizing the undesirable chattering effect. The propeller’s angular
velocity, associated to the control problem in the horizontal plane,
are presented in Fig. 9.
Finally, the last simulation study was a trajectory tracking in

R3. Here, from the initial position x0 = [0, 0, 0, 0] at rest, the
vehiclewas forced tomove to the following desired positions: x1 =
[0, 3, 3, 0], x2 = [3, 3, 3, 0], x3 = [3, 3, 0, 0], x4 = [1, 3, 0, 0] and
x5 = [1, 1, 0, 0], where t0 = 0 s, t1 = 30 s, t2 = 60 s, t3 = 90
s, t4 = 120 s, t5 = 150 s. During the entire path, the yaw angle
should be kept constant, γ = 0. The obtained results are presented
in Figs. 10 and 11.
By observing both figures, it can be verified that, with the pro-

posed control system, the vehicle could follow the desired trajec-
tory, in spite of the disturbance forces. It can be also observed,
Fig. 11(d), that the yaw angle (γ ) was held within the accept-
able bounds, defined by the chosen width of the boundary layer,
φγ = 0.05.

5. Concluding remarks

In this paper, the problem of compensating uncertainty/dis-
turbance in the dynamic positioning system of remotely operated
underwater vehicles was considered. An adaptive fuzzy sliding
mode controller was implemented to deal with the stabilization
and trajectory tracking problems. The adoption of a reduced or-
dermathematical model for the underwater vehicle and the devel-
opment of a control system in a decentralized fashion, neglecting
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cross-coupling terms, was discussed. The boundedness and con-
vergence properties of the closed-loop system were analytically
proven using Lyapunov stability theory and Barbalat’s lemma. By
means of numerical simulations, it could be verified that the pro-
posed strategy was able to cope with both the disturbances, that
can typically arise in the subaquatic environment, and uncertain-
ties in hydrodynamics coefficients. As observed, the incorporation
of an adaptive fuzzy algorithm within the boundary layer made a
better trade-off between tracking performance and chattering pos-
sible.
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